Browse > Article
http://dx.doi.org/10.14374/HFS.2020.28.4.313

Network pharmacological analysis for exploration of the potential application of Hwangryunhaedok-tang for brain diseases  

Lee, Se-Eun (Research Institute for Korean Medicine)
Lim, Jae-Yu (Hong-Je Korean Medical Clinic)
Chung, Byung-Woo (Yonseisu Convalescent Hospital)
Lee, Byoungho (Inju Hospital of Korean Medicine)
Lim, Jung Hwa (School of Korean Medicine, Pusan National University)
Cho, Suin (School of Korean Medicine, Pusan National University)
Publication Information
Herbal Formula Science / v.28, no.4, 2020 , pp. 313-325 More about this Journal
Abstract
Objectives : To explore the associated potential pathways and molecular targets of Hwangryunhaedok-tang(HHT) by the approaches of network pharmacology and bioinformatics in traditional chinese medicine(TCM). Methods : Hwangryunhaedok-tang constituent drugs(Coptidis Rhizoma, CR; Scutellariae Radix, SR; Phellodendri Cortex, PC; Gardeniae Fructus, GF) and their processing types were searched from TCM systems pharmacology(TCMSP). The databases of TCMSP, Kyoto Encyclopedia of Genes and Genomes(KEGG), MCODE and STRING were used to gather information. The network of bioactive ingredients and target gene was constructed by Cytoscape software(version 3.8). Results : A total of 94 HHT active compounds(CR, 12; SR, 35; PC, 33; GF, 14, respectively) were found, and HHT were identified by TCMSP. Applications of KEGG and MCODE analysis indicates that total of 6 bioactive ingredients in the top 10% ranking were obtained and 32 diseases of HHT were screened. The molecular pathway analysis revealed that HHT exerts cancer, inflammation and cerebrovascular diseases effects by acting on several signaling pathway. In addition, HHT found that three genes(e.g. SPIN1, TRIM25, and APP) correlate with the aforementioned diseases. Conclusions : This study showed that network pharmacology analysis is useful to elucidate the complex mechanisms of action of HHT.
Keywords
Hwangryunhaedok-tang; traditional medicine; systems pharmacology; drug discovery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13(2):127-37.   DOI
2 Crosby CG, Dubois R. The cyclooxygenase-2 pathway as a target for treatment or prevention of cancer. Expert Opinion on Emerging Drugs. 2003;8(1):1-7.   DOI
3 Hoter A, El-Sabban ME, Naim HY. The Hsp90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. doi: 10.3390/ijms19092560.   DOI
4 Turnham RE, Scott JD. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology. Gene. 2016;577(2): 101-8. doi: 10.1016/j.gene.2015.11.052.   DOI
5 Fagan V, Johansson C, Gileadi C, Monteiro O, Dunford JE, Nibhani R, Philpott M, Malzahn J, Wells G, Faram R, Cribbs AP, Halidi N, Li F, Chau I, Greschik H, Velupillai S, Allali-Hassani A, Bennett J, Christott T, Giroud C, Lewis AM, Huber KVM, Athanasou N, Bountra C, Jung M, Schüle R, Vedadi M, Arrowsmith C, Xiong Y, Jin J, Fedorov O, Farnie G, Brennan PE, Oppermann U. A chemical probe for tudor domain protein spindlin1 to investigate chromatin function. J Med Chem. 2019; 62(20):9008-25. doi:10.1021/acs.jmedchem. 9b00562.   DOI
6 Bae N, Gao M, Li X, Premkumar T, Sbardella G, Chen J, Bedford MT. A transcriptional coregulator, SPIN.DOC, attenuates the coactivator activity of Spindlin1. J Biol Chem. 2017;292(51):20808-17. doi: 10.1074/jbc.M117.814913.   DOI
7 Norregaard R, Kwon TH, Frokiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract. 2015;34(4):194-200. doi:10.1016/j.krcp.2015.10.004.   DOI
8 Martin-Vicente M, Medrano LM, Resino S, Garcia-Sastre A, Martinez I. TRIM25 in the regulation of the antiviral innate immunity. Frontiers in immunology. 2017;8: 1187.   DOI
9 Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010; 12(1):1-12. doi:10.1007/s12017-009-8104-z.   DOI
10 Zheng X, Wang X, Tu F, Wang Q, Fan Z, Gao G. TRIM25 is required for the antiviral activity of zinc finger antiviral protein. J Virol. 2017;91(9):e00088-17. doi: 10.1128/JVI.00088-17.   DOI
11 Zheng H, Koo E. Biology and pathophysiology of the amyloid precursor protein. Molecular Neurodegeneration. 2011;6(1):27.   DOI
12 Kong MJ, Ha NN, Lee H, Kim Y, Rho SJ, Kim H. Effect of Hwangryunhaedok-tang and its modified prescription on the recovery of spatial cognitive function in the brain ischemia induced by four-vessel occlusion in rats. The Korea Journal of Herbology. 2004;19(4):161.
13 Moon JY. Effects of Hwangryunhaedok-tang on DNA damage, antioxidant enzymes expression and acetylcholinesterase activity. The Korea Journal of Herbology. 2007;22(1):7-12.
14 Kim D, Park SJ, Jung JY, Kim S, Byun SH. Anti-inflammatory effects of the aqueous extract of Hwangnyeonhaedok-tang in LPSactivated macrophage cells. The Korea Journal of Herbology. 2009;24(4):39-47.
15 Kwak DH, Lee JH, Kim DG, Kim T, Lee KJ, Ma JY. Inhibitory effects of Hwangryunhaedok-tang in 3T3-L1 adipogenesis by regulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt phosphorylation. Evid Based Complement Alternat Med. 2013;2013:413906. doi: 10.1155/2013/413906.   DOI
16 Yu YL, Lu SS, Yu S, Liu YC, Wang P, Xie L, Wang GJ, Liu XD. Huang-lian-jie-du-decoction modulates glucagon-like peptide-1 secretion in diabetic rats. J Ethnopharmacol. 2009;124(3):444-9. doi: 10.1016/j.jep.2009.05.027.   DOI
17 Yu M, Ren L, Liang F, Zhang Y, Jiang L, Ma W, Li C, Li X, Ye X. Effect of epiberberine from Coptis chinensis Franch on inhibition of tumor growth in MKN-45 xenograft mice. Phytomedicine. 2020;76:153216. doi:10.1016/j.phymed.2020.153216.   DOI
18 Wu J, Luo Y, Deng D, Su S, Li S, Xiang L, Hu Y, Wang P, Meng X. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review. J Cell Mol Med. 2019;23(12):7946-7960. doi: 10.1111/jcmm. 14725.   DOI
19 Hao P, Xiong YY, Wu HZ, Yang YF. Network pharmacology research and preliminary verification of Gegen Qinlian decoction for the treatment of non-alcoholic fatty liver disease. Natural Product Communications. 2020;15(5):1934578X20920023.
20 Yang N, Sun RB, Chen XL, Zhen L, Ge C, Zhao YQ, He J, Geng JL, Guo JH, Yu XY, Fei F, Feng SQ, Zhu XX, Wang HB, Fu FH, Aa JY, Wang GJ. In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine. Acta Pharmacol Sin. 2017;38(3): 351-361. doi: 10.1038/aps.2016.120.   DOI
21 Choi JS, Kim JH, Ali MY, Jung HJ, Min BS, Choi RJ, Kim GD, Jung HA. Anti- adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways. Arch Pharm Res. 2015;38(12):2153-62. doi: 10.1007/s12272-015-0626-3.   DOI
22 Bernard MP, Phipps RP. Inhibition of cyclooxygenase-2 impairs the expression of essential plasma cell transcription factors and human B-lymphocyte differentiation. Immunology. 2010;129(1):87-96. doi:10.1111/ j.1365-2567.2009.03152.x.   DOI
23 Huang SJ, Mu F, Li F, Wang WJ, Zhang W, Lei L, Ma Y, Wang JW. Systematic elucidation of the potential mechanism of Erzhi pill against drug-induced liver injury via network pharmacology approach. Evid Based Complement Alternat Med. 2020;2020:6219432. doi:10.1155/2020/6219432.   DOI
24 Lee B, Han K, Park HJ, Kim AR, Kwon OJ, Yang C, Cho CS. Efficacy of Hwangryunhaedok-tang(Huang-lian-jie-du-tang, Oren-gedoku-to) for patients with hyperlipidemia: a study protocol for a randomized, double-blind, placebo-controlled, parallel, investigator-initiated clinical trial. Trials. 2020;21(1):750. doi:10.1186/s13063-020-04695-3.   DOI
25 Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules. 2016;21(5): 559. doi:10.3390/molecules21050559.   DOI
26 Yu W, Li Z, Long F, Chen W, Geng Y, Xie Z, Yao M, Han B, Liu T. A systems pharmacology approach to determine active compounds and action mechanisms of Xipayi Kuijie'an enema for treatment of ulcerative colitis. Sci Rep. 2017;7(1):1189. doi: 10.1038/s41598-017-01335-w. Erratum in: Sci Rep. 2018;8(1):4255.   DOI
27 Wang H. A new strategy for integrated urban water management in China: Sponge city. Science China Technological Sciences. 2018; 61(3):317-29.   DOI
28 Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-13.   DOI
29 Yang L, Liu W, Hu Z, Yang M, Li J, Fan X, Pan H. A systems pharmacology approach for identifying the multiple mechanisms of action of the Wei Pi Xiao decoction for the treatment of gastric precancerous lesions. Evid Based Complement Alternat Med. 2019; 2019:1562707. doi: 10.1155/2019/1562707.   DOI
30 Wu Q, Cai C, Guo P, Chen M, Wu X, Zhou J, Luo Y, Zou Y, Liu AL, Wang Q, Kuang Z, Fang J. In silico identification and mechanism exploration of hepatotoxic ingredients in traditional Chinese medicine. Front Pharmacol. 2019;10:458. doi: 10.3389/fphar.2019.00458.   DOI
31 Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 2018;20:e4. doi: 10.1017/erm.2018.3.   DOI
32 Lu X, Wu X, Jing L, Tao L, Zhang Y, Huang R, Zhang G, Ren J. Network pharmacology analysis and experiments validation of the inhibitory effect of JianPi Fu recipe on colorectal cancer LoVo cells metastasis and growth. Evid Based Complement Alternat Med. 2020;2020:4517483. doi: 10.1155/2020/4517483.   DOI
33 Zhang J, Huang Q, Zhao R, Ma Z. A network pharmacology study on the Tripteryguim wilfordii Hook for treatment of Crohn's disease. BMC Complement Med Ther. 2020; 20(1):95. doi:10.1186/s12906-020-02885-9.   DOI
34 Yi F, Sun L, Xu LJ, Peng Y, Liu HB, He CN, Xiao PG. In silico approach for anti-thrombosis drug discovery: P2Y1R structure- based TCMs screening. Front Pharmacol. 2017;7:531. doi:10.3389/fphar.2016.00531.   DOI
35 Li Y, Jiang X, Song L, Yang M, Pan J. Anti-apoptosis mechanism of triptolide based on network pharmacology in focal segmental glomerulosclerosis rats. Biosci Rep. 2020;40(4):BSR20192920. doi:10.1042/BSR20192920.   DOI
36 Hur J. Donguibogam. Namsandang. 2007;382.
37 Williams C, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18(55):7908-16.   DOI
38 Burke A, Wong YY, Clayson Z. Traditional medicine in China today: implications for indigenous health systems in a modern world. Am J Public Health. 2003;93(7):1082-4. doi:10.2105/ajph.93.7.1082.   DOI