• Title/Summary/Keyword: gear transmission error

Search Result 129, Processing Time 0.02 seconds

Power Transmission Optimization Based on the Driving Gear of a Cross Drilling/Milling Unit using a Micro Geometry Method (마이크로 지오메트리 방법을 이용한 크로스 드릴링/밀링 유닛 구동기어의 동력전달 최적화에 관한 연구)

  • Kim, Dong-Seon;Zhen, Qin;Beak, Gwon-In;Wu, Yu-Ting;Jeon, Nam-Sul;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.93-99
    • /
    • 2019
  • A cross drilling/milling Unit is an important mechanical part which is widely used in many kinds of machining tool, and various gear trains with good accuracy and reliability features are widely used in power transmission systems. A study on a novel power transmission optimization method for driving gear trains in cross drilling/milling units is presented in this paper. A commercial program for gear system simulation, Romax Designer, was used in this research to intuitively observe the gear meshing and the load distribution conditions on the gear teeth. We obtained the optimal modification value through comparing the results of repeated experiments. For validation, optimized gears were fabricated and then measured with a precision tester.

Whine Vibration in Gear Drive (기어구동에 의한 화인진동해석)

  • 최연선;신용호;김기범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3246-3252
    • /
    • 1994
  • The vibration of meshing gear system is originated form teeth deformation, teeth contact ratio, profile error, etc. The gear vibration is classified as whine vibration during meshing and as rattle vibration during idling. In this study, the whine vibration is investigated under the assumption of piecewise linearity of elastic stiffness due to the variation of meshing. Numerical, theoretical and experimental investigations show the existence of the superharmonic components of the second and the third order. consistently It can be concluded that the superharmonic components in whine vibration of meshing gear is originated from the stiffness variation. It also shows that the higher order harmonics are reduced on the increase of motor speed.

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

A Study on the Helical Gear Inspection System for Vehicle Transmission Gear Manufacturing Line (생산라인용 자동차 변속기용 헬리컬 기어 검사 장치에 관한 연구)

  • Lee, Min-Ki;Lee, Eung-Suk;Kim, Ki-Nam;Kim, Kwang-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.237-243
    • /
    • 2010
  • This paper presents a study on the helical gear inspection system for application to vehicle transmission gear manufacturing lines. The special gear profile inspection system is not suitable for manufacturing lines due to the measuring time. The master gear method, which was used in this study and compared with the machined gear in the line, is more efficient and economical. In this paper, three helical gear inspection parameters were of concern: nick, run-out, and PCD (pitch circle diameter) error. To evaluate its influence on the accuracy, the gear measuring system was also studied. This system can be useful in practical vehicle transmission gear manufacturing lines, where imported equipment is currently being used.

A PC-Based System for Gear Pitch Analysis and Monitoring in Gear Manufacturing Process (기어피치분석 및 공정관측을 위한 PC기반시스템 구축)

  • 김성준;지용수
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.111-119
    • /
    • 2002
  • Gears are essential elements for mechanical power transmission. Geometric precision is the main factor for characterizing gear grade and qualify. Gear pitch is one of the crucial measurements, which is defined as a distance between two adjacent gear teeth. It is well-known that variability in gear pitches may causes wear-out and vibration noise. Therefore maintaining pitch errors at a low level plays a key role in assuring the gear quality to customers. This paper is concerned with a case study, which presents a computerized system for Inspecting pitch errors in a gear machining process. This system consists of a PC and window-based programs. Although the start and stop is manually accomplished, the process of measuring and analyzing pitch data is automatically conducted in this system. Our purpose lies in reducing inspection cost and time as well as Increasing test reliability. Its operation is briefly illustrated by example. Sometimes a strong autocorrelation is observed from pitch data. We also discuss a process monitoring scheme taking account of autocorrelations.

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing of Planetary Gear (캐리어의 핀홀 위치 오차가 유성기어의 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.67-72
    • /
    • 2016
  • Planetary gear sets are widely used in power transmission components, which have high efficiency and good durability. Their most important design parameter is the load-sharing characteristics among several planetary gears. In this study, the load sharing of planetary gears was analyzed according to the carrier pinhole position error of planetary gear sets. The loads acting on planetary gears varied with the pinhole position error of the carrier, and the load sharing of planetary gears improved as the input load increased. In addition, the load of the planetary gear with a carrier pinhole position error was relatively higher than that of other planetary gears without carrier pinhole position errors. This trend appeared more clearly in the non-floating-type carrier than the floating-type carrier.

A Coupled Lateral and Torsional FE Rotordynamic Analysis of Speed Increasing Geared Rotor-Bearing System (증속 기어 전동 로터-베어링 시스템의 횡-비틀림 연성 유한요소 로터다이나믹 해석)

  • 이안성;하진웅;최동훈
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.82-88
    • /
    • 2001
  • In a transmission or geared rotor system a coupled phenomenon of lateral and torsional vibrations may occur due to the gear meshing effect. Particularly, in high speed or low vibration and low noise applications of geared rotor systems a coupled rotordynamic analysis is required to precisely predict their dynamic characteristics. In this paper a generalized finite element model of a gear pair element is developed, which actively couples the lateral and torsional vibrations due to the gear meshing effect. In the modeling the generalized forces due to the transmission error. geometrical eccentricities. and unbalances in the gear system are also considered. Then. using the developed gear pair element model a coupled unforced rotordynamic analysis is performed with a prototype 800 RT turbo-chiller rotor-bearing system having a hull-pinion speed increasing gear. Results show that the torsional vibration characteristics experience some changes due to the gear meshing and lateral dynamic coupling effect, but that they have no adverse effect and the lateral ones have no practical changes in an operating speed range.

  • PDF

Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification (치형수정된 기어구동계의 비선형 동특성 해석)

  • Cho, Yun-Su;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.25-30
    • /
    • 2002
  • To reduce the vibration of a gear driving system, the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of tooth modification has been decided on the basis of the interference between two gear teeth during gear meshing and the elastic deformation due to loading. However, the dynamic characteristics with tooth modification has to be investigated to avoid the instability to the variation of gear meshing stiffness and the nonlinearity due to gear backlash which results in sub- or super-harmonics in its responses. This research shows the dynamic characteristics with various tooth modifications in its type and quantity.

  • PDF

Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification (치형수정된 기어구동계의 비선형 동특성 해석)

  • 조윤수;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.688-693
    • /
    • 2003
  • To reduce the vibration of a gear driving system. the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of tooth modification has been decided on the basis of the interference between two gear teeth during gear meshing and the elastic deformation due to loading. However. the dynamic characteristics with tooth modification has to be investigated to avoid the instability to the variation of gear meshing stiffness and the nonlinearity due to gear backlash which results in sub- or super-harmonics in its responses. This research shows the dynamic characteristics with various tooth modifications in its type and quantity.

지형오차와 치형수정을 고려한 헬리컬치차의 물림진동

  • 정태형;명재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.803-806
    • /
    • 1995
  • The vibration and nosic of gears is causeed by manufacting error,alignment error in assembly, and thr meshing stiffness of gears which changes periodically as the meshing of teeth process. On a pair of power transmission helical gears with profile error, the relation between the characteristics of gear vibration and the profile error type have been investigated by simulating the vibrational acceleration level and calculating the natural frequency. The results show that the profile error decrease the natural frequency by reducing the tool stiffness and that the concave error type increase the vibrationsl level. And this paper describes the effect of the tip relief on the vibrational acceleration level which a pair of helical gears with concave error generates.

  • PDF