• Title/Summary/Keyword: gear transmission error

Search Result 129, Processing Time 0.024 seconds

Experimental Investigation of the Effect of Lead Errors on Helical Gear and Bearing Vibration Transmission Characteristics

  • Park, Chan-Il;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1395-1403
    • /
    • 2002
  • The characteristics of gear meshing vibration undesgo change as the vibration is transmitted from the gear to the housing. Therefore, vibration transmission characteristics of helical gear systems must be understood before the effective methods of reducing gear noise can be found. In this work, using a helical gear with different lead errors, the gear vibration in the rotational direction and the bearing vibration are measured. The frequency characteristics of gear and bearing vibration are investigated and a comparson is also provided.

Design, manufacture and analysis of gear train with composition of optimum gear ratio (최적 기어비 구현을 통한 치차열의 설계, 제작 및 분석)

  • 정상목;윤재윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.132-138
    • /
    • 1999
  • This paper addresses an analytical approach to the mechanical error analysis of gear train and tolerance design and manufacture of gear train in restricted space considering motor driving torque, driving system inertia, motor acceleration, motor rotor inertia and friction torque. The gear train is designed to have optimum gear ratio in restricted space and each gear is manufactured to have the lowest weight and each gear tooth is heat-treated to have robustness. Based on the small difference between the mechanical error analysis and measurement, gear train design with optimum gear ratio and restricted space and robustness is proposed

  • PDF

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

A Study on Response Analysis by Transmission Error of Yaw Drive for 8 MW Large Capacity Wind Turbines (8 MW급 대용량 풍력발전기용 요 감속기 치합전달오차에 따른 응답해석에 관한 연구)

  • Seo-Won Jang;Se-Ho Park;Young-kuk Kim;Min-Woo Kim;Hyoung-Woo Lee
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • This study performed a response analysis according to the transmission error of the yaw drive. To perform the response analysis, the excitation source of the transmission error was modeled and the outer ring of the first stage bearing and the outer ring of the output shaft bearing were used as measurement positions. The response results were analyzed based on the vibration tolerance values of AGMA 6000-B96. As a result of the response of the first stage bearing outer ring, the maximum displacement of the first stage planetary gear system was 5.59 and the maximum displacement of the second to fourth stage planetary gear systems was 4.21 ㎛ , 3.13 ㎛ , and 25.6 ㎛ . In the case of the output shaft bearing outer ring, the maximum displacement of the first stage planetary gear system was 1.73 ㎛, and the maximum displacement of the second to fourth stage planetary gear system was 1.94 ㎛, 0.73 ㎛, and 2.03 ㎛. According to AGMA 6000-B96, the vibration tolerance of first stage is 17.5 ㎛, and the vibration tolerance of the second to fourth stages is 58 ㎛, 80 ㎛, and 375 ㎛, which shows that the vibration tolerance is satisfied and it is safe.

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

Dynamic Analysis of Gear System Using G.U.I. Program (G.U.I. 프로그램을 이용한 기어 시스템의 동적 해석)

  • 박왕준;윤구영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.857-860
    • /
    • 1996
  • The area of gear dynamics has recently been the focus of many studies. A new tooth profile modification was proposed by author for reducing vibration and noise of involute gears. A comparative dynamic analysis of the gear drive with the involute tooth and the modified tooth profile(using cubic splines) is performed to the unuformal transmission error reduces the gear vibration and noise due to less dynamic tooth load variation during the meshing cycle. This work also include a gear design process by the meaning of a practical approach, such as Win95 based simulation program with all using basic geardesign variables. Especially this program enables gear designers to dynamic analysis based on G.U.I.

  • PDF

Experimental Study on Performance Tests of Vibration Source for Helical Gears (헬리컬 기어계의 가진원 성능 평가에 대한 실험적 연구)

  • Park, Gwang-Min;Kim, Chan-Jung;Lee, Jae-won;Lee, Bong-Hyun;Kim, Wan-soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.602-603
    • /
    • 2014
  • A gearbox can be regarded as a self-exciting dynamic system, which has a vibration source. Transmission error (TE) is considered to be an main excitation source for gear noise and vibration. The TE excitation is transmitted through the gears, shafts, bearings, and housings. Thus, an experimental approach to each mechanical parts is useful in order to understand and evaluate the dynamic behaviour of a gearbox. This study is focused on the transmission and vibration characteristics of a helical gear system in development stage. In addition, by considering the tolerance factors and resonance characteristics, the vibration response of actual dynamic system is analysed.

  • PDF

Measurement of Static Tooth Fillet Strain and Transmission Error of a Cylindrical Worm Gear (원통형 웜기어의 정적 이뿌리 변형률 및 전달오차 측정)

  • Lee, Dong-Hwan;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1238-1244
    • /
    • 1999
  • Using a cylindrical worm gear under the actual condition of static loading, tooth fillet strains and transmission errors have been measured. The maximum strain occurs on the filet region of the center of the 1st mating tooth. Tooth fillet strain changes most sensitively according to the variations of the center distance and recess side eccentricity than the access side eccentricity. Even the no-backlash worm gear shows the transmission errors.

A Study on the Transmission Error of the Gear on Contact Load (접촉하중에 따른 기어의 트랜스미션 에러에 관한 연구)

  • Tak, Sung-Hoon;Hwang, Gue-Sec;Son, Yu-Sun;Bae, Hyo-Je;Lyu, Sung-Ki
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.117-122
    • /
    • 2007
  • This study deals with the TE (Transmission Error) of gear tooth by modifying a profile and lead of a surface of tooth. First, we experimentally confirmed that the TE is a synthesis of the sliding velocity between both gears. Since various types of TE appear in the experiments, we introduced definition of transmission error and the optimism design by modifying a surface parameters. The test stand's performance is then evaluated through a series of multiple torque transmission error tests. Comparisons are made between data recorded before and after the test stand's redesign, and subsequently repeatability studies are performed to verify the veracity of the measured data. Finally, the experimental results are compared to the analytical predictions of two different gear analysis programs.

Analysis of Gear Noise and Design for Gear Noise Reduction (저소음 치차설계를 위한 치형수정에 관한 연구)

  • Yoon, Koo-Young;Park, Wang-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.129-135
    • /
    • 1996
  • The area of gear vibration and noise, has recently been the focus of many studies. The proper kinematic and geometric design of gears, the mathematical modeling of gear system are essential for a good design. This work present a gear disign for reducing noise, and practical approaches used for machinery noise reduction slong with the summary of methods available for predicting gear noise in terms of the transmis- sion error, and show a comparative study with other methods. A new tooth profile modification is proposed for reducing vibration and noise of involute gears. The method is based on the use of cubic spline curves. The tooth profile is constrained to assume an involute shape during the loaded operation. Thus the new gear profile assures conjugate motion at all points along the line of action. The new profile is found to result in a more uniform static transmission error compared to not only standard involute profile but also modificated profile therby contributing to the improvement of vibration and noise characteristics of the gear.

  • PDF