• Title/Summary/Keyword: gear tooth accuracy

Search Result 26, Processing Time 0.02 seconds

An Experimental Study to Reduce the Fraction of Noise Defect of Hoist Gear Boxes (호이스트 기어박스의 소음불량률 저감을 위한 실험적 연구)

  • 이희원;손병진;신용하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1347-1354
    • /
    • 1994
  • This paper deals with the experimental research, including measurement and analysis and field survey, on the causes of occurring noise defective gear boxes in hoist production plant in order to reduce the fraction of their occurrence. In this reserch following investigations are performed : measurement and gear-boxes, examination of each machining process of production, measurement and analysis of dimensional accuracy of each part, comparative vibration test with exchanging inaccurate parts. From these investigations, it is found that the machining accuracy of pinion gear tooth thickness is the most sensitive factor of noise problem. By maintaining the tooth thickness error within 0.05 mm tolerance in the gear cutting process, the fraction of noise defective gear-boxes are greatly reduced to less than 2%, where the usual rate of it has been 20-50%.

Development of the Sub Gear for the Scissors Gear System for Automobile Engines

  • Nakazawa, Katsuhito;Nagata, Toshihiko;Motooka, Naoki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.756-757
    • /
    • 2006
  • P/M enables the economical production of components for many kinds of gears. Functionally, the sub gear requires high tooth accuracy and bending fatigue strength. The whole tooth profile was sized after sintering to satisfy the gear tooth accuracy specification. The part was redesigned to reduce machining requirements. The required bending fatigue strength was achieved through appropriate material choice and induction of compressive residual stress by shotpeening after carburizing. The P/M sub gear replaced a forged steel gear, satisfied performance requirements, expanded the use of P/M applications and provided over 30% cost reduction.

  • PDF

Properties of a Helical Gear Due to the Manufacturing Process - Forged versus Machined Product (헬리컬기어 제조공정에 따른 특성 비교 -단조품과 기계가공품-)

  • Jung, H.C.;Kang, B.S.;Lee, I.H.;Choi, S.T.;Sin, S.J.;Kang, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • Although high productivity is possible, cold forged helical gears have not been widely used due to difficulty in achieving mechanical properties as well as dimensional accuracy of the product. Confidence in the gear characteristics also is very important in heavy-duty gear applications. Therefore, the properties of forged gears must be compared to the properties of conventional machined gears. The properties might be different due to the different fabrication processes. In this study, machined and forged products both before and after heat-treated have been compared by measuring the residual stress and involute curve of the tooth. Characteristics of hardness and microstructure were also compared. Additionally, tooth fracture strength was compared for the heat-treated products. Moreover, the tooth strength and the fracture pattern were compared between the machined and forged gears. The forged gear showed decreased changes in residual stress and decreased changes in dimensions when compared to the machined gear before and after heat treatment. The forged gear was over 10% better than the machined gear in tooth strength.

Study on Empirical Gear Profile Micro-modifications for Gear Transmission (기어미션용 실증적 기어치형수정에 관한 연구)

  • Zhang, Qi;Wang, Jiu-Gen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.54-62
    • /
    • 2017
  • When gears mesh, shock and noise are produced as results of tooth error and tooth deformation under load. Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. Gear tooth modification research plays a positive role in reducing TE and improving the design level and transmission performance of transmission systems. In high-precision manufacturing gear, gear tooth modification is also commonly used to reduce noise in practical applications. In order to study the accuracy of gear transmission, some empirical gear profile micro-modifications are introduced, and a helical gear pair is modeled and analyzed in RomaxDesigner software to investigate the utility of these modification methods. Some of these will be selected as experimental proposals for gear pairs, and these manufactured gears will be tested and compared in a semi-anechoic room later. The final purpose of this study is to find reasonable and convenient empirical formulae to facilitate improved gear production.

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

A Study on the Vibration Characteristics of Helical Gears with Tooth Errors (치형오차를 가진 헬리컬기어의 진동특성에 관한 연구)

  • Park, Chan-Il;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1534-1542
    • /
    • 1996
  • Gear vibration is caused by the mesh stiffness, gear accuracy, and assembling errors. For these reasons, helical gear has the azial, radial, and rotational vibrations. In this study, the mesh stiffness is calculated by considering the tooth bending, contact, and foundation deformations. Rotational vibration of helical gear with tooth error is modeled by the nonlidear equation of motion with single degree of freedom and is anlyzed numerically. Also, by a specially designed experimental set-up, the analysis are cross-checked and the vibration characteristics of helical gear are discussed.

Billet Treatment and Die Design for Net-Shape Forming of Gear by Cold Forging (정밀정형 냉간단조 기어성형을 위한 소재처리와 다이설계)

  • Kang K.G.J.;Park H.J.;Yun J.C.;Kim J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, net-shape forming of an automobile gear is investigated. Barrel, a component of automobile start motor, is adopted as a net-shape forming. In order to accomplish the goal of net-shape forming without cutting of tooth and cam after forming, forming ability is raised through billet treatment and die design. As a technique of billet treatment spheroidizing annealing of billet to get low hardness and molybdenum disulphide coating to get low contact friction between billet and die is carried out. One of critical points of die design, fillet radii variation of tooth of die is applied to get smooth surface of barrel after cold forging. As a measurement of tooth accuracy, distance between two pins and lead-tooth alignments are investigated. Cam profile accuracy is checked with a 3D measuring instrument. Results obtained from the tests revealed reasonable result with respect to design goal. By these results, the paper shows that reasonable results can be obtained by billet treatment and die design for net-shape forming.

  • PDF

Adaptive Extraction Method for Phase Foreground Region in Laser Interferometry of Gear

  • Xian Wang;Yichao Zhao;Chaoyang Ju;Chaoyong Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Tooth surface shape error is an important parameter in gear accuracy evaluation. When tooth surface shape error is measured by laser interferometry, the gear interferogram is highly distorted and the gray level distribution is not uniform. Therefore, it is important for gear interferometry to extract the foreground region from the gear interference fringe image directly and accurately. This paper presents an approach for foreground extraction in gear interference images by leveraging the sinusoidal variation characteristics shown by the interference fringes. A gray level mask with an adaptive threshold is established to capture the relevant features, while a local variance evaluation function is employed to analyze the fluctuation state of the interference image and derive a repair mask. By combining these masks, the foreground region is directly extracted. Comparative evaluations using qualitative and quantitative assessment methods are performed to compare the proposed algorithm with both reference results and traditional approaches. The experimental findings reveal a remarkable degree of matching between the algorithm and the reference results. As a result, this method shows great potential for widespread application in the foreground extraction of gear interference images.

A Study on Fp Z/8 of Anti-Backlash Gear in an Engine (엔진용 백래쉬 방지 기어의 Fp Z/8에 관한 연구)

  • Zhong, Xing;Lv, Jianhua;Lu, Hao;Zhou, Rui;Guo, Jianyu;Kai, Lang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2020
  • The high speed of an engine balance box may cause significant additional gear noise. Gear accuracy is the most useful key to reduce gear noise, but the small tooth width and thin-walled anti-backlash gear introduce challenges to the manufacturing process. In order to reduce the gear noise caused by gear pitch error, this paper investigates the correlation between influencing factors and gear pitch error by analyzing the processing technology, tooling fixture, and equipment accuracy. By improving the process and optimizing the gear design, the gear machining accuracy was improved and the processing cost was saved.

3D Printing Characteristics of Reverse Idle Gears for Tractor Transmissions (트랙터 트랜스미션용 후진 아이들 기어의 3D 프린팅 특성)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • This paper concerns the possibility of 3D printing reverse idle gears for tractor transmission. For the purposes of this experiment, idle gears were manufactured using a SLA 3D printer, FDM 3D printer, and through machining. The accuracy of the idle gears produced in these three different ways were evaluated by the properties of their outer diameter, inner diameter, roundness, concentricity, parallelism, span, backlash, and gear grade. The tooth characteristics of the idle gears were evaluated by their profile, lead, and the pitch of the gears. The results of this experiment determined that the surface conditions created by the finishing process had a significant impact on the dimensional accuracy of the gears and the characteristics of their teeth.