• Title/Summary/Keyword: gastrointestinal bacteria

Search Result 166, Processing Time 0.024 seconds

시판생약이 세균발육에 미치는 영향 (Effects on Bacteria Growth of Grude Drugs in Korean Market)

  • 김영재;김태희
    • 약학회지
    • /
    • 제8권2호
    • /
    • pp.54-58
    • /
    • 1964
  • Effects on the bacteria gwoth of 96 kinds of crude drugs described in "Pen-Tsao-Kang-Mu" was investigated. Galla Rhois, Moutan Cortex Radicis, Aconiti Tuber, Euphorbiae Radix and PAeoniae Radix showed the antibacterial activity but Cnidii Rhizoma, Coicis Semen, Angelicae gigantis Radix, Asparagi Radix and Liriopes Tuber show the gwoth promoting action of all bacteria used in this experience. It can be seen that 10 kinds of crude drugs classified as poisonous plants inhibited the growth or had no effect by never promoted. 32 kinds of crude drugs as drugs acting on the gastrointestinal system showed antibacterial activity on E. coli $O_{55}$ and E. coli $O_{111}$. 18 kinds on inflammation showed antibacterial activity on Staphylococcus aureus and Sarcina lutea.

  • PDF

모유 미생물총에 대한 고찰 (Human Milk Microbiota: A Review)

  • 이주은;김근배
    • Journal of Dairy Science and Biotechnology
    • /
    • 제37권1호
    • /
    • pp.15-26
    • /
    • 2019
  • A common belief is that human milk is sterile. However, the development of culture-independent molecular methods, especially Next Generation Sequencing, has revealed that human milk harbors diverse and rich bacterial communities. Although studies aimed at characterizing the microbiota of human milk have produced different findings, Staphylococcus and Streptococcus are presumed to be normal members of the microbiota. Factors that influence variation in the microbiota are unclear; however, the postpartum time, route of delivery, maternal obesity, and health status may be influential. The origin of the microbiota is a hotly debated topic. Human milk bacteria are thought to be introduced through bacterial exposure of the mammary duct during breast feeding and/or the entero-mammary pathway from the maternal gastrointestinal tract. Although the exact mechanism related to the entero-mammary pathway is unknown, it is presumed that bacteria penetrate the intestinal epithelium and then migrate to the mammary gland, dendritic cells, and macrophages. In this review, various relevant studies are introduced.

Molecular Analysis of Archaea, Bacteria and Eucarya Communities in the Rumen - Review-

  • White, B.A.;Cann, I.K.O.;Kocherginskaya, S.A.;Aminov, R.I.;Thill, L.A.;Mackie, R.I.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.129-138
    • /
    • 1999
  • If rumen bacteria can be manipulated to utilize nutrients (i.e., ammonia and plant cell wall carbohydrates) more completely and efficiently, the need for protein supplementation can be reduced or eliminated and the digestion of fiber in forage or agricultural residue-based diets could be enhanced. However, these approaches require a complete and accurate description of the rumen community, as well as methods for the rapid and accurate detection of microbial density, diversity, phylogeny, and gene expression. Molecular ecology techniques based on small subunit (SSU) rRNA sequences, nucleic acid probes and the polymerase chain reaction (PCR) can potentially provide a complete description of the microbial ecology of the rumen of ruminant animals. The development of these molecular tools will result in greater insights into community structure and activity of gut microbial ecosystems in relation to functional interactions between different bacteria, spatial and temporal relationships between different microorganisms and between microorganisms and reed panicles. Molecular approaches based on SSU rRNA serve to evaluate the presence of specific sequences in the community and provide a link between knowledge obtained from pure cultures and the microbial populations they represent in the rumen. The successful development and application of these methods promises to provide opportunities to link distribution and identity of gastrointestinal microbes in their natural environment with their genetic potential and in situ activities. The use of approaches for assessing pupulation dynamics as well as for assessing community functionality will result in an increased understanding and a complete description of the gastrointestinal communities of production animals fed under different dietary regimes, and lead to new strategies for improving animal growth.

Effect of Lactic Acid Bacteria-Fermented Mulberry Leaf Extract on the Improvement of Intestinal Function in Rats

  • Lee, Hyun-Joo;Lee, Hwan;Choi, Yang-Il;Lee, Jae-Joon
    • 한국축산식품학회지
    • /
    • 제37권4호
    • /
    • pp.561-570
    • /
    • 2017
  • This study examined the laxative effects of mulberry leaf extract (MLE) fermented by lactic acid bacteria (LAB), which contains high levels of polyphenolic and flavonoid compounds, against loperamide-induced constipation in rats. Sprague-Dawley rats were divided into a normal group (N) and three experimental groups; loperamide treated group (C), loperamide and LAB-fermented MLE 300 mg/kg treated group (MLEL), and loperamide and LAB-fermented MLE 600 mg/kg treated group (MLEH). After 33 d, fecal pellet amount, fecal weight, water content of fecal, gastrointestinal transit time and length, and serum lipid profiles were measured. Constipation was induced via subcutaneous injection of loperamide (2.0 mg/kg b. w., twice a day) for the final 5 d of the experiment. After loperamide administration, the LAB-fermented MLE groups showed a significantly increase in the fecal pellets number, wet weight, and water content in rats compared with the C group. Moreover, increases in the intestinal length and viable Lactobacillus numbers in the feces were observed in the LAB-fermented MLE groups. The intestinal transit time was shorter in the LAB-fermented MLE groups than in the C group. In addition, the LAB-fermented MLE groups showed a significant decrease in triglyceride and total cholesterol levels and an increase in HDL-cholesterol level. These results indicated that oral administration of LAB-fermented MLE shows laxative effect in loperamide-induced constipated rats.

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • 제45권4호
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

Development of Gut Microbiota in a Mouse Model of Ovalbumin-induced Allergic Diarrhea under Sub-barrier System

  • Wang, Juan-Hong;Fan, Song-Wei;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권4호
    • /
    • pp.545-551
    • /
    • 2013
  • This study aimed to present a mouse model of ovalbumin (OVA) induced allergic diarrhea under a sub-barrier system and investigate the development of gut microbiota in this model. Male BALB/c mice were systemically sensitized with OVA or sham-sensitized with saline, and followed by oral OVA intubation, leading to OVA-specific acute diarrhea. Compared with sham-sensitized mice, sera OVA-specific IgG1 and total IgE in OVA-sensitized mice were dramatically elevated, and the number of mast cells was greatly increased in the jejunum of the OVA-sensitized mice. Principle component analysis of the DGGE profile showed that samples from group of OVA-sensitized mice and group of sham-sensitized mice were scattered into two different regions. Real-time PCR analysis showed that the number of 16S rRNA gene copies of Lactobacillus in the colon of OVA-sensitized mice decreased significantly, while there was no significant difference in the number of Bifidobacterium and total bacteria. In conclusion, OVA-specific allergic diarrhea was successfully induced under a sub-barrier system, and changes of allergic reactions during induction was coupled with changes in gut microbiota, especially the number of colonic Lactobacillus, but the role of gut microbiota in the development of food allergic reactions needs to be further evaluated.

Metagenomic investigation of gastrointestinal microbiome in cattle

  • Kim, Minseok;Park, Tansol;Yu, Zhongtang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1515-1528
    • /
    • 2017
  • The gastrointestinal (GI) tract, including the rumen and the other intestinal segments of cattle, harbors a diverse, complex, and dynamic microbiome that drives feed digestion and fermentation in cattle, determining feed efficiency and output of pollutants. This microbiome also plays an important role in affecting host health. Research has been conducted for more than a century to understand the microbiome and its relationship to feed efficiency and host health. The traditional cultivation-based research elucidated some of the major metabolism, but studies using molecular biology techniques conducted from late 1980's to the late early 2000's greatly expanded our view of the diversity of the rumen and intestinal microbiome of cattle. Recently, metagenomics has been the primary technology to characterize the GI microbiome and its relationship with host nutrition and health. This review addresses the main methods/techniques in current use, the knowledge gained, and some of the challenges that remain. Most of the primers used in quantitative real-time polymerase chain reaction quantification and diversity analysis using metagenomics of ruminal bacteria, archaea, fungi, and protozoa were also compiled.

Characterization of Antimicrobial Substance Producing Lactococcus sp. HM58 Isolated from Gastrointestinal Track of Flounder

  • Jeong Hyun-Mi;Yum Do-Young;Lee Jung-Ki;Choi Mi-Young;Kim Jin-Man
    • Fisheries and Aquatic Sciences
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2003
  • A lactic acid bacterium showing antimicrobial activity against fish pathogen was isolated from gastrointestinal tract of flounder for the purpose of use as an aquaculture probiotics. From the analysis of morphological and physiological characteristics, the isolated strain was named as Lactococcus sp. HM58. Antimicrobial substance (AMS) from Lactococcus sp. HM58 showed strong growth inhibitory activity against Streptococcus sp., which is a fish pathogenic bacterium. AMS was presumed a proteinaceous compound with stability in heat and wide pH range from 2 to 10. It was started to produce in exponential growth phase and was not produced any more in stationary phase. It showed comparatively broad antimicrobial spectrum against most of gram positive bacteria used for this study. About $84\%$ of Lactococcus sp. HM58 was able to survive in the artificial gastric juice though it was low to the extent in the artificial bile juice. In the sensitivity test for various antibiotics, this strain was highly sensitive for doxycycline, erythromycin, amoxicillin clavu1anic acid and ampicillin.

Unveiling the Gastrointestinal Microbiome Symphony: Insights Into Post-Gastric Cancer Treatment Microbial Patterns and Potential Therapeutic Avenues

  • Chan Hyuk Park
    • Journal of Gastric Cancer
    • /
    • 제24권1호
    • /
    • pp.89-98
    • /
    • 2024
  • This review delved into the intricate relationship between the gastrointestinal microbiome and gastric cancer, particularly focusing on post-treatment alterations, notably following gastrectomy, and the effects of anticancer therapies. Following gastrectomy, analysis of fecal samples revealed an increased presence of oral cavity aerotolerant and bile acid-transforming bacteria in the intestine. Similar changes were observed in the gastric microbiome, highlighting significant alterations in taxon abundance and emphasizing the reciprocal interaction between the oral and gastric microbiomes. In contrast, the impact of chemotherapy and immunotherapy on the gut microbiome was subtle, although discernible differences were noted between treatment responders and non-responders. Certain bacterial taxa showed promise as potential prognostic markers. Notably, probiotics emerged as a promising approach for postgastrectomy recovery, displaying the capacity to alleviate inflammation, bolster immune responses, and maintain a healthy gut microbiome. Several strains, including Bifidobacterium, Lactobacillus, and Clostridium butyricum, exhibited favorable outcomes in postoperative patients, suggesting their potential roles in comprehensive patient care. In conclusion, understanding the intricate interplay between the gastrointestinal microbiome and gastric cancer treatment offers prospects for predicting responses and enhancing postoperative recovery. Probiotics, with their positive impact on inflammation and immunity, have emerged as potential adjuncts in patient care. Continued research is imperative to fully harness the potential of microbiome-based interventions in the management of gastric cancer.

Bioactive Peptides in Milk and Dairy Products: A Review

  • Park, Young Woo;Nam, Myoung Soo
    • 한국축산식품학회지
    • /
    • 제35권6호
    • /
    • pp.831-840
    • /
    • 2015
  • Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, antioxidative, antithrombotic, opioid, anti-appetizing, immunomodulatory and mineral-binding activities.