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Metagenomic investigation of gastrointestinal microbiome in cattle
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Abstract: The gastrointestinal (GI) tract, including the rumen and the other intestinal segments 
of cattle, harbors a diverse, complex, and dynamic microbiome that drives feed digestion and 
fermentation in cattle, determining feed efficiency and output of pollutants. This microbiome 
also plays an important role in affecting host health. Research has been conducted for more than 
a century to understand the microbiome and its relationship to feed efficiency and host health. 
The traditional cultivation-based research elucidated some of the major metabolism, but studies 
using molecular biology techniques conducted from late 1980’s to the late early 2000’s greatly 
expanded our view of the diversity of the rumen and intestinal microbiome of cattle. Recently, 
metagenomics has been the primary technology to characterize the GI microbiome and its 
relationship with host nutrition and health. This review addresses the main methods/techniques 
in current use, the knowledge gained, and some of the challenges that remain. Most of the primers 
used in quantitative real-time polymerase chain reaction quantification and diversity analysis 
using metagenomics of ruminal bacteria, archaea, fungi, and protozoa were also compiled. 
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INTRODUCTION

The rumen microbiome is a complex community of prokaryotes, eukaryotes, and viruses. The 
prokaryotes include bacteria, primarily anaerobic bacteria, and archaea, primarily methanogens. 
Anaerobic fungi and protozoa, exclusively ciliates, constitute the eukaryotic community. The large 
number of species present and their uneven distributions among different species create several 
challenges to analyze or characterize any rumen microbiome comprehensively. The inability 
to culture most microbes in the rumen prompted development and application of cultivation-
independent methods and technologies starting in the 1990’s (reviewed by [1-3]). Those appro aches 
and tech nologies are primarily based on the 16S or 18S rRNA genes as the phylogenetic markers. 
Hybridi zation using specific oligonucleotide probes (including fluorescent in situ hybridization) 
(e.g., [4,5]), differential migration of DNA fragments in denatured gel matrices (including dena-
turing or temperature gradient gel electrophoresis and ribosomal intergenic spacer analysis) (e.g., 
[6-9]), and DNA sequencing based on the Sanger sequencing technology (e.g., [10,11]) were the 
primary methods. Studies using one or more of these methods allowed detection or identification 
of many microbes that had not been known to be present in the rumen and improved our under-
standing and appreciation of the diversity and complexity of the rumen microbiome. The global 
diversity framework of the rumen bacteria and archaea was established based on the sequence 
data produced in a large number of studies that use the Sanger sequencing technology [12]. These 
methods and technologies were replaced about 10 years ago by the next-generation DNA sequenc-
ing technologies.
 Metagenomics empowered by the so-called next-generation sequencing (NGS) was first used 
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to reveal the glycoside hydrolases in the rumen of dairy cows [13] 
and to evaluate the diversity of bacteria in the rumen and feces 
of beef cattle [14]. By now, hundreds of metagenomic studies have 
been reported to address different aspects of the rumen micro-
biome, such as the effect of feed additive or diets on the rumen 
microbiome, early patterns of colonization of young rumen, and 
the diversity of the enzymes, especially glycoside hydrolases. In 
this review, we discussed metagenomic investigation of gastro-
intestinal (GI) microbiome in cattle using quantitative real-time 
polymerase chain reaction (qPCR), phylogenetic microarrays, 
and NGS. The limitations and future perspectives of metageno-
mic studies of GI microbiome are also discussed.

SAMPLING AND DNA EXTRACTION

Rumen cannulation has been used as a standard method to fa-
cilitate sample collection from the rumen of cattle [15]. However, 
only a small number of ruminally cannulated cattle are available 
to any researcher in a single study, thus limiting the number of 
livestock that can be sampled to evaluate the ruminal microbiome 
if only rumen cannulated cows are used. Rumen contents can be 
collected from non-cannulated cattle using stomach tubing, and 
any number of cattle can be sampled. A previous study showed 
that these two different methods did not result in significant differ-
ence in the composition of ruminal microbiome [15], indicating 
that stomach tubing can be used as an alternative method to collect 
ruminal samples from a large number of cows that are required 
by the investigators. However, this approach cannot be used to 
repeatedly collect rumen samples from the same cattle within a 
short period (e.g., a day) because the cattle are stressed during 
the sampling. Contamination by saliva may not affect the results 
of microbiome analysis, but it can alter the fermentation charac-
teristics. Thus, precaution needs to be taken to minimize saliva 
contamination. 
 Metagenomic DNA can be extracted from the collected rumen 
contents. The rumen contents can also be separated into a liquid 
fraction and a solid fraction if desired and then subjected to sepa-
rate metagenomic DNA extraction as described previously [6]. 
The separation of the two fractions allows analysis and identifi-
cation of the microbes present in each of the fractions. Fresh fecal 
samples can be collected from cattle by rectal grab with a glove 
[16], while samples from other GI segments, such as cecum and 
jejunum, can only be collected after cattle are harvested [17,18].
 Because different microbes are present in GI samples, meta-
genomic DNA representing the entire microbiome needs to be 
extracted. It has been reported that bead-beating based methods 

are more efficient than other methods to extract metagenomic 
DNA from GI samples [19]. Yu and Morrison [19] developed the 
repeated bead beating plus column (RBB+C) purification method 
to efficiently extract metagenomic DNA from ruminal and other 
GI samples, and this method increased DNA yield by up to 6-fold 
compared to three other common methods. The RBB+C method 
has been widely used to extract metagenomic DNA from rumi-
nal and lower GI samples in cattle and has been cited for more 
than 660 times (e.g. [17,18,20-24]). It should be noted that many 
studies used commercial general purposed DNA extraction kits 
to extract metagenomic DNA from GI samples. Because most 
of those commercial kits were developed for general purposes, 
they may not yield representative DNA, thus likely skewing the 
actual composition and structure of GI microbiomes.

PHYLOGENETIC MARKER GENES

The 16S rRNA genes have been used as the marker gene to deter-
mine the composition of both bacterial and archaeal communities 
because it is phylogenetically conserved and it does not laterally 
transfer [25]. The 16S rRNA gene sequence has a characteristic 
organization, with 9 hypervariable regions separating 10 con-
served regions (Figure 1) [9,26]. The sequences of the conserved 
regions are similar (the degree of similarity depends on the phylo-
genetic relatedness) among bacterial or archaeal species, and they 
can be used to identify most bacteria or archaea. The conserved 
regions (C1-C9) are used to design PCR primers to amplify a 
defined portion of the 16S rRNA gene. The 16S rRNA gene se-
quences of the hypervariable regions (V1-V9) are different among 
bacterial or archaeal species and can be targeted to identify indi-
vidual bacterial or archaeal species using PCR with species-specific 
primers for the 16S rRNA gene. Universal and species-specific 
PCR primer sets that are commonly used in examining micro-
bial populations are listed in Table 1 and 2. The resultant 16S rRNA 
gene amplicons can be subjected to analyses using clone library, 
denaturing gradient gel electrophoresis (DGGE), qPCR, phylo-
genetic microarray, and NGS. In addition to 16S rRNA genes, 
methyl coenzyme-M reductase subunit A, that is unique of metha-
nogens, has been used as a phylogenetic marker gene to examine 
methanogen populations [27,28] including the ruminal metha-
nogen populations (e.g. [29-32]). 

META-ANALYSIS OF MICROBIAL 
DIVERSITY

Cloning of 16S rRNA gene amplicons and then Sanger sequenc-

Figure 1. A diagram showing the alternate conserved regions and hypervariable regions of the 16S rRNA genes. C1-C10, the 10 conserved regions; V1-V9, the 9 hypervariable 
regions. Alignments with high sequence similarity are highlighted in black, whereas alignments with low sequence similarity are highlighted in gray. 



www.ajas.info  1517

Kim et al (2017) Asian-Australas J Anim Sci 30:1515-1528

Table 1. Primers used for quantitative real-time polymerase chain reaction analysis of ruminal bacteria

Target
Primer sequences (5′ - 3′)

Annealing temp (°C) Product size (bp) References
Forward Reverse

Domain
16S rRNA ACTCCTACGGGAGGCAGCAGT GTATTACCGCGGCTGCTGGCAC 58 200 [110]

GTGSTGCAYGGYTGTCGTCA ACGTCRTCCMCACCTTCCTC 60 150 [111]
ACTCCTACGGGAGGCAG GACTACCAGGGTATCTAATCC 50 468 [112]
CGGCAACGAGCGCAACCC CCATTGTAGCACGTGTGTAGCC 60 130 [59]
CCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG 60 194 [113]
ACTCCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG 60 200 [114]
CGGYCCAGACTCCTACGGG TTACCGCGGCTGCTGGCAC 60 200 [115]

Phylum
Bacteroidetes GGARCATGTGGTTTAATTCGATGAT AGCTGACGACAA CCATGCAG 60 126 [116]

CAGCAGCCGCGGTAATAC CCGTCAATTCCTTTGAGTTT 50 408 [117]
Firmicutes GGAGYATGTGGTTTAATTCGAAGCA AGCTGACGACAACCATGCAC 60 126 [116]

Class
Gammaproteobacteria CMATGCCGCGTGTGTGAA ACTCCCCAGGCGGTCDACTTA 56 497 [118]

Genus
Prevotella CACCAAGGCGACGATCA GGATAACGCCYGGACCT 60 283 [119]

GGTTCTGAGAGGAAGGTCCCC TCCTGCACGCTACTTGGCTG 60 121 [46]
CACRGTAAACGATGGATGCC GGTCGGGTTGCAGACC 55 534 [40,120]

Bacteroides GAGAGGAAGGTCCCCCAC CGCTACTTGGCTGGTTCAG 60 106 [121]
Bacteroides and Prevotella GAAGGTCCCCCACATTG CAATCGGAGTTCTTCGTG 56 418 [122]
Butyrivibrio GTGCCAGCMGCCGCGG TGCGGCACYGACTCCCTATG 65 371 [51,123]
Clostridial cluster xiv CGGTACCTGACTAAGAAGC AGTTTYATTCTTGCGAACG 55 429 [124]
Faecalibacterium GGAGGAAGAAGGTCTTCGG AATTCCGCCTACCTCTGCACT 60 248 [124]
Lactobacillus GAGGCAGCAGTAGGGAATCTTC GGCCAGTTACTACCTCTATCCTTCTTC 60 126 [125]
Ruminococcus GAGTGAAGTAGAGGTAAGCGGAATTC GCCGTACTCCCCAGGTGG 60 75 [47]

Species
Anaerovibrio lipolytica TGGGTGTTAGAAATGGATTC CTCTCCTGCACTCAAGAATT 62 597 [48]
Butyrivibrio fibrisolvens ACACACCGCCCGTACCA TCCTTACGGTTGGGTCACAGA 59 63 [50]

ACCGCATAAGCGCACGGA CGGGTCCATCTTGTACCGATAAAT 60 65 [46,126]
B. proteoclasticus TCCGGTGGTATGAGATGGGC GTCGCTGCATCAGAGTTTCCT 55 185 [127]
Eubacterium ruminantium CTCCCGAGACTGAGGAAGCTTG GTCCATCTCACACCACCGGA 60 184 [46,128]
Fibrobacter succinogenes GGTATGGGATGAGCTTGC GCCTGCCCCTGAACTATC 59 446 [48,129]

GTTCGGAATTACTGGGCGTAAA CGCCTGCCCCTGAACTATC 60 121 [59]
GCGGGTAGCAAACAGGATTAGA CCCCCGGACACCCAGTAT 59 77 [46,130]

Megasphaera elsdenii AGATGGGGACAACAGCTGGA CGAAAGCTCCGAAGAGCCT 59 79 [46]
GACCGAAACTGCGATGCTAGA CGCCTCAGCGTCAGTTGTC 58, 62 130 [131,132]

Rumicoccus albus CCCTAAAAGCAGTCTTAGTTCG CCTCCTTGCGGTTAGAACA 62 175 [129]
TGTTAACAGAGGGAAGCAAAGCA TGCAGCCTACAATCCGAACTAA 60 75 [46]

R. flavefaciens CGAACGGAGATAATTTGAGTTTACTTAGG CGGTCTCTGTATGTTATGAGGTATTACC 59 132 [59]
TGGCGGACGGGTGAGTAA TTACCATCCGTTTCCAGAAGCT 60 71 [46,128]
TCTGGAAACGGATGGTA CCTTTAAGACAGGAGTTTACAA 55 295 [129]

Ruminobacter amylophilus CTGGGGAGCTGCCTGAATG GCATCTGAATGCGACTGGTTG 53 101 [46]
CAACCAGTCGCATTCAGA CACTACTCATGGCAACAT 57 642 [48]

Prevotella albensis GCGCCACTGACGCTGAAG CCCCAAATCCAAAAGGACTCAG 52 110 [49]
P. brevis GGTTTCCTTGAGTGTATTCGACGTC CTTTCGCTTGGCCGCTG 60 219 [46]
P. bryantii ACTGCAGCGCGAACTGTCAGA ACCTTACGGTGGCAGTGTCTC 62, 68 540 [48]

AGCGCAGGCCGTTTGG GCTTCCTGTGCACTCAAGTCTGAC 60 91 [46,128]
P. ruminicola GAAAGTCGGATTAATGCTCTATGTTG CATCCTATAGCGGTAAACCTTTGG 50 74 [46]

GGTTATCTTGAGTGAGTT CTGATGGCAACTAAAGAA 53, 56 485 [48,131]
Streptococcus bovis TTCCTAGAGATAGGAAGTTTCTTCGG ATGATGGCAACTAACAATAGGGGT 59 127 [46]

CTAATACCGCATAACAGCAT AGAAACTTCCTATCTCTAGG 57 869 [48]
Selenomonas ruminantium and TGCTAATACCGAATGTTG TCCTGCACTCAAGAAAGA 59 513 [48]
Mitsuokella multacida CAATAAGCATTCCGCCTGGG TTCACTCAATGTCAAGCCCTGG 56, 61 138 [46,128,130]
Succinivibrio dextrinosolvens CGTCAGCTCGTGTCGTGAGA CCCGCTGGCAACAAAGG 60 80 [46,133]

TGGGAAGCTACCTGATAGAG CCTTCAGAGAGGTTCTCACT 57 854 [48]
Treponema bryantii AGTCGAGCGGTAAGATTG CAAAGCGTTTCTCTCACT 57 421 [48]

Epimural bacterial microbiome
Campylobacter GGATGACACTTTTCGGAG AATTCCATCTGCCTCTCC 57 246 [134]
Kingella CGCGTTAGCTACGCTACTGA CGTGCATTTGGAACTGGTCA 57 239 [135]
Brachymonas ATGCAGTTCCCAGGTTAGGC ACCTGGAGCTCATGACGGTA 57 169 [135]
Desulfobulbus ACATCTGACTGACCAAGCCG TGCTGGGTGGCTAATATCCG 57 153 [135]

AATTCCACATTCCCCTCTGGT GAGGCGGCTAATATCTGTCTCGT 57 223 [135]
Olivibacter AGTATCAACGGCACTGCTCC ACGTGTGGGTGTTTGAAGGT 57 178 [135]
Azoarcus TCTGTCGCACTCTAGCCTTG GGACGGGAAGAAAACTGCCA 57 225 [135]
Ruminobacter GTTTACGGCGTGGACTACCA ACTGCATTTGAAACTGACGAACT 57 188 [135]
Pontibacter GTTTACGGCGTGGACTACCA CGTTGAAACTGCGGGTCTTG 57 183 [135]
Desulfovibrio CGCAGTTTCAAGGGCAGTTC GTTGCACTGTGCCAATCAGC 57 195 [135]



1518  www.ajas.info

Kim et al (2017) Asian-Australas J Anim Sci 30:1515-1528

ing were the primary method to reveal the composition of GI 
microbiome in cattle before NGS became affordable about 7 years 
ago. Some studies also sequenced excised DGGE band using 
Sanger sequencing to identify the bacteria of interest. Most studies 
using these methods focused on the analysis of bacterial com-
munities in the liquid fraction of the rumen (e.g., [33-36]), and 
only a small number of studies analyzed bacterial communities 
in the solid fraction of the rumen (e.g., [6,13]). Some studies ex-
amined bacterial communities present on the rumen wall [37,38]. 
Although these methods are no longer commonly used these 
days, they can still help identify novel bacteria [39]. Additionally, 
when genus-specific primers are used, the diversity of a specific 
genus such as Prevotella and Treponema in the rumen can be 
examined [40,41]. 
 All the 16S rRNA gene sequences obtained using cloning and 
Sanger sequencing have been archived in GenBank, which stores 
all the sequences including sequences of poor quality and chimeric 

sequences from any sample. The ribosomal database project (RDP, 
http://rdp.cme.msu.edu/) archives all 16S rRNA gene sequences 
that passed quality controls. A meta-analysis of 16S rRNA gene 
sequences that are publicly available in the RDP database can be 
used to investigate GI microbiome in cattle (Figure 2). Kim et 
al [12] first retrieved all the 16S rRNA gene sequences of both 
ruminal bacteria and archaea deposited in the RDP database and 
then conducted a meta-analysis of the retrieved sequences to 
examine the collective bacterial and archaeal diversity in the 
rumen. In that study, a total of 13,478 bacterial and 3,516 archaeal 
16S rRNA gene sequences were obtained from the RDP database 
(Release 10, Update 22). Those sequences were used to establish 
a framework of bacterial and archaeal diversity in the rumen 
[12]. Firmicutes and Bacteroidetes were predominant bacterial 
phyla, while Euryarchaeota was the most predominant archaeal 
phylum. A recent study [42] updated the appraisal of the ruminal 
archaeal diversity using a meta-analysis of 8,623 archaeal se-

Table 2. Primers used for quantitative real-time polymerase chain reaction of ruminal archaea, protozoa, and fungi

Target
Primer sequences (5' - 3') Annealing temp 

(°C)
Product size 

(bp) References
Forward Reverse

Prokaryote CCTACGGGRBGCASCAG GGACTACYVGGGTATCTAAT 60 466 [112]
Archaea

Methanogens (mcrA) TTCGGTGGATCDCARAGRGC GBARGTCGWAWCCGTAGAATCC 56 140 [30]
GGYGGTGTMGGDTTCACMCARTA CGTTCATBGCGTAGTTVGGRTAGT 60 460 [136,137]
GGTGGTGTMGGDTTCACMCARTA CGTTCATBGCGTAGTTVGGRTAGT 55 469 [137]

Methanogens GGATTAGATACCCSGGTAGT GTTGARTCCAATTAAACCGCA 60 191 [138]
(16S rRNA) CCGGAGATGGAACCTGAGAC CGGTCTTGCCCAGCTCTTATTC 60 ~160 [36]

ATTAGATACCCSBGTAGTCC GCCATGCACCWCCTCT 60 273 [112]
AMGWTCCAGGCCCTACGG TGGCACCSGTCTTRCCC 63 149 [139]

Order
RCC CAGCAGTCGCGAAAACTTC AACAACTTCTCTCCGGCAC 60 485 [140]

TTCTGGGGTAGGGGTAAAATC GTCTGCAGCGTTTACACCCT 60 149 [141]
RCC a, f CGACTTCCGAAGAGACTGTCAA GTCTGCAGCGTTTACACCCT 63 199 [139]
RCC c, d, e, j, k, l CGGRGAGACTGCCGG GTCTGCAGCGTTTACACCCT 63 192 [139]
non RCC AATTGGAKTCAACGCCGGR TGGGTCTCGCTCGTTG 60 142 [142,143]
Methanobacteriales CGWAGGGAAGCTGTTAAGT TACCGTCGTCCACTCCTT 60 343 [112]
Methanococcales TAAGGGCTGGGCAAGT CACCTAGTYCGCARAGTTTA 60 337 [112]
Methanomicrobiales ATCGRTACGGGTTGTGGG CACCTAACGCRCATHGTTTAC 63 506 [112]
Methanosarcinales GTAAACGATRYTCGCTAGGT GGTCCCCACAGWGTACC 60 354 [112]

Family
Methanosarcinaceae GAAACCGYGATAAGGGGA TAGCGARCATCGTTTACG 60 408 [112]
Methanosaetaceae TAATCCTYGARGGACCACCA CCTACGGCACCRACMAC 60 164 [112]

Genus
Methanobrevibacter TTTAATAAGTCTCTGGTGAAATC AGATTCGTTCTAGTTAGACGC 60 ~160 [36]

TGGGAATTGCTGGWGATACTRTT GGAGCRGCTCAAAGCCA 63 231 [139]
Methanomicrobium TGTTTAAAACACATGGGAAGA ATTCCCAGTATCTCTTAGACGC 60 176 [141]

Species
Methanosphaera stadtmanae CTTAACTATAAGAATTGCTGGAG TTCGTTACTCACCGTCAAGATC 60 ~150 [36]

Protozoa and fungi
General anaerobic fungi GAGGAAGTAAAAGTCGTAACAAGGTTTC CAAATTCACAAAGGGTAGGATGATT 62 120 [59]
Neocallimastigales-specific TTGACAATGGATCTCTTGGTTCTC GTGCAATATGCGTTCGAAGATT 60 110 [61]
Protozoa GCTTTCGWTGGTAGTGTATT CTTGCCCTCYAATCGTWCT 56 223 [53]
Dasytricha ruminantium CTAGAGCTAATACATGCC CTACAATCACAATTAAATTGC 55 312 [57]
Entodinium GAGCTAATACATGCTAAGGC CCCTCACTACAATCGAGATTTAAGG 55 317 [57]
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quences retrieved from the RDP database (Release 11, Update 3). 
 A similar meta-analysis was also performed to assess the com-
position of bacterial communities in the feces of cattle [43]. In 
this study, a total of 13,663 bacterial sequences recovered from 
the feces of cattle were retrieved from the RDP database (Release 
11, Update 1). Firmicutes and Bacteroidetes were the predominant 
phyla in the feces of cattle, but the fecal and ruminal microbiome 
differed in the membership of these two major phyla. 

QUANTITATIVE REAL-TIME 
POLYMERASE CHAIN REACTION 

The qPCR has been used to accurately quantify GI microbial 
populations in cattle [44]. By continued efforts of rumen micro-
biologists in the past two decades, various pairs of universal and 
specific primers have been developed and validated using rumen 
samples. These primers support not only detection but also quan-
tification of various groups of rumen microbes. In this review we 
compiled most of the primers used in the qPCR analysis of bacte-
ria (Table 1) and archaea, protozoa, and fungi (Table 2). Compared 
to the other methods, qPCR is sensitive and quantitative, allow-
ing reliable analysis of individual microbial populations, with 
respect to population dynamics and responses to dietary inter-
ventions. It should be noted that although qPCR does not allow 
quantification of numbers of microbial cells per unit of the sam-
ple, the gene copy numbers determined by qPCR is a reliable 
measure of the abundance of a microbial population. 
 Domain-specific primer sets for the 16S rRNA gene have been 
designed to detect and quantify all bacteria or archaea, while 
phylum-specific primer sets were designed to target members 
of a phylum (Table 1). Genus-specific primers are frequently used 
to determine the abundance of a genus such as Prevotella, Bac-
teroides, Butyrivibrio, or Ruminococcus (Table 1). Studies using 

qPCR have provided interesting insight into abundance and thus 
the importance of some ruminal bacteria. For instance, among 
the known bacterial genera, Prevotella was the most predominant 
regardless of diet or location in the rumen [45,46]. However, the 
three cultured species of this genus, P. ruminicola, P. bryantii, and 
P. brevis, each accounts for only less than 3.8% of Prevotella, sug-
gesting that new species remain to be identified and characterized 
within the genus Prevotella [45-47]. 
 Tajima et al [48] designed 12 primer sets specific for culturable 
ruminal bacterial species that include Fibrobacter succinogenes, 
Ruminococcus flavefaciens, Ruminococcus albus, Prevotella ru-
minicola, Prevotella albensis, Prevotella bryantii, Selenomonas 
ruminantium-Mitsuokella multiacida, Streptococcus bovis, Eu-
bacterium ruminantium, Treponema bryantii, Succinivibrio 
dextrinosolvens, and Anaerovibrio lipolytica. These ruminal bac-
terial species as affected by diet shifts were monitored using the 
specific primers. Populations of rumen Megasphaera elsdenii, 
Butyrivibrio fibrisolvens, and Streptococcus bovis also were moni-
tored in cattle fed different diets using qPCR [49,50]. Additionally, 
qPCR was also used to quantify uncultured ruminal bacteria 
represented by new 16S rRNA gene sequences [45,51], providing 
opportunities to help understand the importance and functions 
of uncultured microbes in GI environment. 
 The primer sets specific for total archaea and their lower taxa 
(order, family, and genus) were listed in Table 2. Among ruminal 
methanogens, Methanobrevibacter has been identified as the most 
dominant genus [12]. Recently, the shift of metabolically active 
methane producers by many of the dietary interventions has been 
confirmed by qPCR. The “rumen cluster C” (RCC), now placed 
in the new order Methanoplasmatales, was suggested as a po-
tential methane mitigating target due to its significant positive 
correlation with reduced methane upon oil supplementation [52]. 
 The procedure developed by Sylvester et al [53] has been widely 
used to quantify the abundance of protozoa in the rumen (Table 
2), and the qPCR result was comparable to that of microscopic 
counting, which needs expertise and experience to identify genus 
or species of ruminal protozoa. This primer pair had been used 
in quantifying the abundance of total ruminal protozoa in various 
studies [54-56]. Primers targeting the 18S rRNA genes of spe-
cific taxa of ruminal protozoa, including Entodinium spp. and 
Dasytricha ruminantium, have also been developed and used in 
quantifying individual populations of ruminal protozoa [57]. 
 Anaerobic fungi are not a large group of microbes in the 
rumen, but their hyphae can penetrate into the fiber helping colo-
nization by other cellulolytic bacteria [58]. Specific primers for 
ruminal anaerobic fungi were first reported by Denman et al [59] 
(Table 2). Genera Neocallimastix, Orpinomyces, and Piromyces 
were successfully amplified by the primer set without amplifica-
tion of other aerobic fungal genera. Most fungal primers were 
designed to amplify the internal transcribed spacer 1, rather than 
the fungal 18S rRNA gene because the latter is too conserved 
to provide an adequate phylogenetic resolution [60]. Another 

Figure 2. A flowchart for meta-analysis of gastrointestinal (GI) microbial diversity in 
cattle.
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Neocallimastigales-specific qPCR primer set targeting the 5.8S 
rRNA gene was first validated by Edwards et al [61], but few studies 
have ever used it. 
 Several recent papers investigated the bacterial communities 
in the lower GI tract of pre-weaned calves and steers using qPCR 
[62,63], and these studies advanced our limited knowledge about 
the microbiome residing in the small and large intestines and its 
roles in post-ruminal feed digestion. The composition of metha-
nogen communities appeared to differ not only among different 
segments of the intestines (jejunum, ileum, cecum, colon, and 
rectum) but also among individual animals [64]. Frey et al [65] 
detected methanogens in the duodenum of lactating dairy cows, 
but it remains to be determined if they are live methanogens. 

PHYLOGENETIC MICROARRAY 

A phylogenetic microarray is a 16S rRNA gene chip composed 
of a large number of oligonucleotide probes. It can simultane-
ously detect predominant microbes in a complex ecosystem [44]. 
The phylogenetic microarray technique has been widely used to 
investigate the human GI microbiome [66,67]. The first micro-
array dedicated to the analysis of ruminal microbiome, referred 
to as RumenBactArray, was developed by Kim et al [68]. The 
RumenBactArray was developed using the 16S rRNA gene se-
quences that were obtained for a meta-analysis of rumen microbial 
diversity [12]. In total, 1,666 specific microarray probes were in-
cluded in the RumenBactArray, and six of these arrays can be 
synthesized on each chip, allowing simultaneous analysis of six 
samples, with each probe being in three replicates per array. Speci-
ficity of the microarray probes was evaluated using known 16S 
rRNA gene clones obtained in a previous study [39]. The utility 
of the RumenBactArray was tested using liquid and solid frac-
tions of rumen samples from sheep fed two different diets [51]. 
The structure of ruminal bacterial communities was greatly differ-
ent between the two diet groups and between the two fractions 
in the same diet group. This RumenBactArray was recently used 
to examine ruminal bacterial communities as affected by essen-
tial oils intended to decrease methane production [69]. The 
RumenBactArray analysis revealed bacterial population shifts 
upon exposure to the essential oils. 
 Although phylogenetic microarrays can rapidly assess changes 
in microbial populations in a microbiome, they have some limi-
tations. The microarray method is not as quantitative, sensitive, 
or specific as qPCR, and it can only detect dominant microbial 
populations [44]. Additionally, the microarray method cannot 
detect novel microbial populations that are not represented by 
the probes because only known sequences are used for probe 
design. New probes need to be added to overcome this limitation. 
Another technical limitation is that poor probe design and hybri-
dization can result in inaccurate profiles of microbial populations. 
Sensitivity involved in probe hybridization is positively associated 
with probe length, whereas the opposite holds true for specificity 

[70]. To improve both sensitivity and specificity, Kim et al [68] 
used the GoArray program [71] to design the RumenBactArray 
probes, each of which is composed of 2 sub-probes, and a linker 
between the 2 sub-probes. Additionally, the specificity of micro-
array probes can be affected by the number of reference sequences 
used in the design of probes. Therefore, the specificity of micro-
array probes will need to be regularly checked based on updated 
reference sequences. 
 The RumenBactArray was developed when 454 pyrosequenc-
ing was the only NGS available for metagenomic analysis. Now 
that Illumina systems, especially the MiSeq platform, allow cost-
effective sequencing-based metagenomic analysis, most people 
use NGS. However, because microarray can provide a uniformed 
analysis and microarray data are easier to analyze, microarrays 
may become a useful tool once the composition of rumen and 
GI microbiome of cattle has been determined. 

NEXT-GENERATION SEQUENCING 

Since the 454 Genome Sequencer FLX system developed by 454 
Life Sciences (Roche, Branford, CT, USA) was used for 16S rRNA 
gene amplicon sequencing, microbiomes in various environments 
have been investigated. Brulc et al [13] first investigated the rumi-
nal bacterial communities of cattle using 454 pyrosequencing 
and revealed the microbial difference between liquid and adherent 
fractions. Since then, many studies have examined the ruminal 
bacterial communities of cattle using 454 pyrosequencing by 
analyzing the V1-V3 region of the 16S rRNA genes (Table 3). 
These studies showed that ruminal microbiome is greatly affected 
by diets and feed additives (e.g., [14,20,21,72]). In addition, Cerso-
simo et al [73] analyzed the composition of ruminal methanogens 
using 454 pyrosequencing of archaeal 16S rRNA gene amplicons 
generated from a pair of primers specific for methanogens, while 
Fouts et al [74] investigated the ruminal fungal diversity using 
a fungal-specific 18S rRNA primer pair (Table 3). Ruminal pro-
tozoal communities also were examined using a protozoal-specific 
18S rRNA primer pair [75]. Due to the high cost and low through-
put, 454 pyrosequencing is no longer used in analyzing any 
microbiome. 
 Compared to the 454 pyrosequencing, the Illumina sequencing 
technique is more cost-efficient and has much greater throughput. 
Caporaso et al [76] developed a workflow to examine bacterial 
diversity using the Illumina GAIIx platform by analyzing the V4 
region of the 16S rRNA genes (Table 3). However, in the past few 
years, the Illumina MiSeq system has been the primary tech-
nology for microbiome analysis (Illumina, San Diego, CA, USA). 
The MiSeq system can produce 500 bp sequence reads by using 
the 2×300 bp paired-end sequencing that is comparable to those 
generated by 454 pyrosequencing. The V1-V3 region [23] and 
the V4-V5 regions [77] have been the primary regions sequenced 
using the Illumina MiSeq platform when ruminal bacterial com-
munities are analyzed. Table 3 lists most of the primers that have 
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been used to generate PCR amplicons for NGS sequencing. The 
Illumina MiSeq platform has also been used to analyze micro-
biome in the lower GI tract (cecum, jejunum, and colon) of cattle 
[17,18,22,24], and Firmicutes was found to be the largest phylum 
in these intestine segments [17,18,22,24]. It is also shown that 
the rumen and the lower GI tract harbor phylogenetically distinct 
microbiome [43].
 The Pacific Biosciences (PacBio) sequencing is considered one 
of the third generation of DNA sequencing technologies (Pacific 
Biosciences, Menlo Park, CA, USA). Only one study has been 
reported that used this technology to analyze the ruminal micro-
biome [78]. Using the PacBio RSII system, nearly full-length 
(V1-V8) 16S rRNA genes can be sequenced (Table 3), provid-
ing finer phylogenetic resolution. The PacBio RSII system and 
the MiSeq system resulted in different microbiome composition 
and structure. Future studies are needed to determine which 
technology can support more accurate characterization of rumen 
and GI microbiome. A model or mock microbiome with known 
composition and structure will be required for such a comparison. 
 Specialty bioinformatics programs are required to analyze the 
large volumes of NGS data. QIIME [79] and Mothur [80] are the 
commonly used bioinformatics software packages to analyze 16S 
rRNA gene sequences generated from NGS technologies. A flow-
chart summarizing the bioinformatics process is shown in Figure 
3. First, the NGS datasets are preprocessed to check sequence 
quality and to remove potential chimeric sequences and low-
quality (often Q<20) sequences. ChimeraSlayer [81] and UCHIME 

[82] are widely used to detect and remove possible chimeric se-
quences. The cleaned sequences are clustered into operational 
taxonomic units (OTUs) using one of three OTU picking methods 
that are de novo, closed-reference, and open-reference methods 
based on a sequence similarity value (often 97%). The de novo 
method does not use a reference sequence set but clusters se-
quences into OTUs based the chosen sequence similarity value. 
In de novo OTU picking, all sequences are clustered into OTUs. 
Both the closed-reference and the open-reference OTU picking 
methods use a reference sequence core set. When the closed-
reference OTU picking method is used, sequences are clustered 
against a reference sequence set based on the chosen sequence 
similarity value. Sequences that do not match any reference se-
quences are excluded. The open-reference OTU picking process 
does closed-reference OTU picking first, and the sequences that 
do not match a reference of the reference sequence set are clus-
tered into OTUs de novo. Uclust is the default OTU clustering 
tool to pick OTUs from unaligned sequences in QIIME [79,83], 
while furthest neighbor, average neighbor, or nearest neighbor 
algorithm is used to generate OTUs from aligned sequences in 
Mothur [80]. Each OTU can be assigned to a taxon by comparing 
its representative sequence to the reference sequences in specialty 
databases such as Greengenes [84,85] and Silva [86-88]. A com-
monly used taxonomic assignment program is the Naïve Bayesian 
Classifier [89], which is the default method in both QIIME [79] 
and Mothur [80]. 
 Alpha diversity measures the diversity in a given sample, while 

Table 3. Ribosomal RNA gene primer pairs used for the next-generation sequencing method

Domain Primer Sequence (5′→3′) Target Method Reference

Bacteria 515f-806r GTGYCAGCMGCCGCGGTAA V4 Illumina MiSeq [76]
GGACTACNVGGGTWTCTAAT

27f AGAGTTTGATCMTGGCTCAG V1-V3 Roche 454 [22,23]
519r GWATTACCGCGGCKGCTG Illumina MiSeq
357f CCTACGGGAGGCAGCAG V3-V4 Illumina MiSeq [144]
806r GGACTACNVGGGTWTCTAAT
357f CCTACGGGAGGCAGCAG V3-V5 Roche 454 [81]
926r CCGTCAATTCMTTTRAGT Illumina MiSeq
518f CCAGCAGCYGCGG V4-V5 Illumina MiSeq [77]
926r CCGTCAATTCNTTTRAGT
27f AGAGTTTGATCMTGGCTCAG V1-V8 Pacific Biosciences [78]
1392r GACGGGCGGTGTGTAC
27f AGAGTTTGATCMTGGCTCAG V1-V9 Pacific Biosciences [145]
1492r TACCTTGTTACGACTT

Archaea Met86F GCTCAGTAACACGTGG V1-V3 Illumina MiSeq [146,147]
Met471R GWRTTACCGCGGCKGCTG
Ar915aF AGGAATTGGCGGGGGAGCAC V6-V8 Roche 454 [75]
Ar1386R GCGGTGTGTGCAAGGAGC

Protozoa RP841F GACTAGGGATTGGARTGG A 18S rRNA gene region Roche 454 [75]
Reg1320R AATTGCAAAGATCTATCCC

Fungi LR3 CCGTGTTTCAAGACGGG A 28S rRNA gene region Roche 454 [148]
LR0R ACCCGCTGAACTTAAGC
EF4a GGAAGGGRTGTATTTATTAG A 18S rRNA gene region Roche 454 [74]
fung5a GTAAAAGTCCTGGTTCCCC
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beta diversity measurements allow comparison of diversity among 
samples. For analysis of microbiome, OTUs at 97% sequence sim-
ilarity are regarded as species equivalent and are used for both 
alpha and beta diversity statistics. Examples of alpha diversity 
analysis are observed richness (number of detected OTUs) and pre-
dicted richness (rarefied, Chao1, and ACE estimates of maximum 
species richness). On the other hand, beta diversity comparison 
is typically performed using multivariate analyses such as prin-
cipal coordinates analysis [90], partial least square discriminant 
analysis, canonical correspondence analysis (CCA) [91], analysis 
of similarities [92], and permutational analysis of variance [93]. 
All these analyses allow visualization of similarity or dissimilarity 
among samples, while CCA also visualizes correlations between 
samples and environmental parameters.
 Determination of the composition and structure of the rumen 
and the GI microbiome is important, but this type of microbiome 
has high functional redundancy [94], and it has been shown that 
phylogenetic variations in the human gut microbiome are not 
necessarily accompanied by functional changes [95]. Therefore, 
it is important to characterize rumen and GI microbiome with 
respect to its functional diversity and features. Phylogenetic in-
vestigation of communities by reconstruction of unobserved 
states (PICRUSt) is a bioinformatics tool that has been used to 

predict metagenomic functions using 16S rRNA marker gene 
sequences [96]. Liu et al [97] used PICRUSt to examine the poten-
tial functionality of ruminal bacterial communities. However, 
members of the same species may have very different functions. 
This is exemplified by some strains of Escherichia coli and Rumi-
nococcus albus. Therefore, it should be cautious to interpret the 
functional profiles predicted from 16S rRNA gene sequence using 
PICRUSt. 
 Although the 16S rRNA gene-based NGS methods have greatly 
contributed to the appraisal and understanding the diversity of 
rumen and GI microbiome, the resultant microbiome diversity 
may not be accurate due to limitations of PCR, such as differences 
in amplification efficiency, nonspecific annealing, and PCR arti-
fact formation [98-100]. Thus, caution should be exercised when 
NGS data are interpreted quantitatively.
 Shotgun metagenomic sequencing is one of the primary tech-
nologies to investigate the functional profiles of microbiomes 
[101]. Shotgun metagenomic sequencing empowered by NGS 
can potentially identify all the genes in GI microbiome in cattle. 
Several studies have used shotgun sequencing to investigate the 
functional diversity in the ruminal microbiome of cattle, includ-
ing cattle fed methane-mitigating diets [102], cattle fed different 
forages [103], and cattle with wheat-induced frothy bloat [104]. 
This approach has also been used in comparatively characteriz-
ing the functional profiles in the fecal microbiome of buffaloes 
and cattle [105]. The advantage of shotgun metagenomic sequen-
cing is that it does not have potential PCR biases of the 16S rRNA 
gene-based NGS method [99]. One limitation of the shotgun 
sequencing approach is that it can only reveal the functional 
potential, not the actual functions expressed in any microbiome.
 Metatranscriptomics allows direct sequencing of the RNA 
trans cripts expressed in a microbiome. Therefore, metatranscrip-
tomics is better suited than shotgun metagenomic sequencing in 
functional analysis of rumen microbiome. RNA-Seq is the pre-
ferred technology to perform metatranscriptomic analysis of rumen 
microbiome. However, because more than 80% of the total RNA 
is rRNA, efficient functional profiling of rumen microbiome re-
quires removal of the rRNA from the total RNA preparation. 
Several commercial kits, such as the Ribo-Zero rRNA Removal 
Kit (Bacteria) (Illumina, USA), MICROBExpress Bacterial mRNA 
Enrichment Kit (Ambion, Austin, TX, USA), RiboMinus Trans-
criptome Isolation Kit (Life Technologies, Gaithersburg, MD, 
USA), and NEBNext rRNA Depletion Kit (New England Biolabs, 
Beverly, MA, USA), are available to achieve a reasonably ade-
quate depletion of rRNA. Because of the difficulty in isolating 
high-quality RNA and depletion of rRNA, metatranscriptomics 
has just been used in a few studies, including the study that char-
acterized the functional profiles of the consortia adherent to the 
bovine rumen [106,107]. As the sequencing cost continues to fall 
and the output of sequencing technologies continues to increase, 
total RNA may be sequenced directly without depleting the rRNA. 
Total RNA sequencing will provide the opportunity to characterize 

Figure 3. A flowchart outlining the process of bioinformatic analysis of 16S rRNA 
gene amplicons sequenced using next-generation sequencing (NGS). Either QIIME or 
Mothur can be used. 
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both the composition of the functions of a microbiome. If the 
16S rRNA genes are also sequenced, the ratio of rRNA over 16S 
rRNA gene can be used to assess the metabolic activity status of 
a bacterial taxon [108]. 
 From a nutritional perspective, it is useful to identify the 
species or taxa of microbes that contribute to important aspects 
of rumen functions, such as fiber digestion, proteolysis, and ru-
men acidosis. Even though we know the metabolism and the role 
of some rumen microbes, it remains to be difficult, if not impossi-
ble, to ascertain the causality relationship between a group of 
microbes and a rumen function. In recent studies, correlation 
analysis has been used to identify the microbes that are correlated, 
either positively or negatively, to given fermentation characteris-
tics or animal performance (e.g. [23,109]). Although causality 
relationship cannot be identified from such correlations, the 
correlated microbes can serve as indicators of fermentation or 
animal performance. New hypotheses can be formulated to further 
investigate if the correlated microbes are the cause of phenotypes 
of interest. 

CONCLUDING REMARKS

Globally, the demands for beef and dairy products continue to 
grow as the population grows and the living standards improve 
in developing countries. Numerous nutritional studies have been 
conducted to improve feed efficiency and host health, and in-
vestigation and analysis of rumen microbiome, mostly using 
metagenomics, are increasingly being included in nutritional 
studies. Metagenomic studies of rumen microbiome may not 
directly enhance nutrition or host health, but they will provide 
the knowledge to help develop new rational dietary interventions 
to improve feed efficiency and host health. Furthermore, the den-
sity of microbes in the rumen is among the highest, creating 
intense interactions among microbes, both among the members 
of the same species or different species, including interactions 
between bacteria and phages. Metagenomic studies of the rumen 
microbiome will advance understanding of microbiology, es-
pecially microbial interactions, fermentative metabolism, and 
interspecies hydrogen transfer. Such fundamental microbiolo-
gical knowledge can also help nutritional studies. Collaboration 
between nutritionists and microbiologists is needed to better 
design the research and interpret the results.
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