Browse > Article
http://dx.doi.org/10.22424/jmsb.2019.37.1.15

Human Milk Microbiota: A Review  

Lee, Ju-Eun (Department of Animal Science and Technology, Chung-Ang University)
Kim, Geun-Bae (Department of Animal Science and Technology, Chung-Ang University)
Publication Information
Journal of Dairy Science and Biotechnology / v.37, no.1, 2019 , pp. 15-26 More about this Journal
Abstract
A common belief is that human milk is sterile. However, the development of culture-independent molecular methods, especially Next Generation Sequencing, has revealed that human milk harbors diverse and rich bacterial communities. Although studies aimed at characterizing the microbiota of human milk have produced different findings, Staphylococcus and Streptococcus are presumed to be normal members of the microbiota. Factors that influence variation in the microbiota are unclear; however, the postpartum time, route of delivery, maternal obesity, and health status may be influential. The origin of the microbiota is a hotly debated topic. Human milk bacteria are thought to be introduced through bacterial exposure of the mammary duct during breast feeding and/or the entero-mammary pathway from the maternal gastrointestinal tract. Although the exact mechanism related to the entero-mammary pathway is unknown, it is presumed that bacteria penetrate the intestinal epithelium and then migrate to the mammary gland, dendritic cells, and macrophages. In this review, various relevant studies are introduced.
Keywords
human milk; breast milk; human milk bacteria; microbiota; microbiome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hunt, K. M., Foster, J. A., Forney, L. J., Schutte, U. M., Beck, D. L., Abdo, Z., Fox, L. K., Williams, J. E., McGuire, M. K. and McGuire, M. A. 2011. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6:e21313.   DOI
2 Hunt, K. M., Preuss, J., Nissan, C., Davlin, C. A., Williams, J. E., Shafii, B., Richardson, A. D., McGuire, M. K., Bode, L. and McGuire, M. A. 2012. Human milk oligosaccharides promote the growth of staphylococci. Appl. Environ. Microb. 78:4763-4770.   DOI
3 Martin, R., Langa, S., Reviriego, C., Jiminez, E., Marin, M. L., Xaus, J., Fernandez, L. and Rodriguez, J. M. 2003. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143:754-758.   DOI
4 McGuire, M. K. and McGuire, M. A. 2015. Human milk: mother nature's prototypical probiotic food? Adv. Nutr. 6:112-123.   DOI
5 Jost, T., Lacroix, C., Braegger, C. and Chassard, C. 2013. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Brit. J. Nutr. 110:1253-1262.   DOI
6 Jimenez, E., de Andres, J., Manrique, M., Pareja-Tobes, P., Tobes, R., Martinez-Blanch, J. F., Codoner, F. M., Ramon, D., Fernandez, L. and Rodriguez, J. M. 2015. Metagenomic analysis of milk of healthy and mastitis-suffering women. J. Hum. Lact. 31:406-415.   DOI
7 Jimenez, E., Delgado, S., Maldonado, A., Arroyo, R., Albujar, M., Garcia, N., Jariod, M., Fernandez, L., Gomez, A. and Rodriguez, J. M. 2008a. Staphylococcus epidermidis : a ifferential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 8:143.   DOI
8 Jimenez, E., Fernandez, L., Delgado, S., Garcia, N., Albujar, M., Gomez, A. and Rodriguez, J. M. 2008b. Assessment of the bacterial diversity of human colostrum by culturalbased techniques: analysis of the staphylococcal and enterococcal populations. Res. Microbiol. 159:595-601.   DOI
9 Jost, T., Lacroix, C., Braegger, C. and Chassard, C. 2015. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 73:426-437.   DOI
10 Kelsey, J. A., Bayles, K. W., Shafii, B. and McGuire, M. A. 2006. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41:951-961.   DOI
11 Perez, P. F., Dore, J., Leclerc, M., Levenez, F., Benyacoub, J., Serrant, P., Segura-Roddero, I., Schiffrin, E. J. and Donnet-Hughes, A. 2007. Bacterial imprinting of the neonatal immune system: lessons from maternal cells. Pediatrics 119:e724-732.   DOI
12 McGuire, M. K. and McGuire, M. A. 2017. Got bacteria? The astounding, yet not-sosurprising, microbiome of human milk. Curr. Opin. Biotech. 44:63-38.   DOI
13 Olivares, M., Albrecht, S., De Palma, G., Ferrer, M. D., Castillejo, G., Schols, H. A. and Sanz, Y. 2014. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur. J. Nutr. 54:119-128.   DOI
14 Osterman, K. L. and Rahm, V. A. 2000. Lactation mastitis: bacterial cultivation of breast milk, symptoms, treatment, and outcomes. J. Hum. Lact. 16:297-302.   DOI
15 Ramsay, D. T., Kent, J. C., Owens, R. A. and Hartmann, P. E. 2004. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 113:361-367.   DOI
16 Rescigno, M., Urbano, M., Valzasina, B., Francolin, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P. and Riddiardi-Castagnoli, P. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361-367.   DOI
17 Rodriguez, J. M. 2014. The origin of human milk bacteria: is there a bacterial enteromammary pathway during late pregnancy and lactation? Adv. Nutr. 5:779-784.   DOI
18 Cabrera-Rubio, R., Collado, M. C., Laitinen, K., Salminen, S., Isolauri, E. and Mira, A. 2012. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96:544-551.   DOI
19 Williams, J. E., Carrothers, J. M., Lackey, K. A., Beatty, N. F., York, M. A., Brooker, S. L., Shafii, B., Price, W. J., Settles, M. L., McGuire, M. A. and McGuire, M. K. 2017. Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J. Nutr. 147:1739-1748.   DOI
20 Bode, L. 2012. Human milk oligosaccharides: every baby needs a sugar mom. Glycobiology 22:1147-1162.   DOI
21 Cephas, K. D., Kim, J., Mathai, R. A., Barry, K. A., Dowd, S. E., Meline, B. S. and Swanson, K. S. 2011. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE 6:e23503.   DOI
22 Chan, A. A., Bashir, M., Rivas, M. N., Duvall, K., Sieling, P. A., Pieber, T. R., Vaishampayan, P. A., Love, S. M. and Lee, D. J. 2016. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci. Rep. 6:28061.   DOI
23 Collado, M. C., Delgado, S., Maldonado, A. and Rodriguez, J. M. 2009. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 48:523-528.   DOI
24 Gonzalez, R., Maldonado, A., Martin, V., Mandomando, I., Fumado, V., Metzner, K. J., Sacoor, C., Fernandez, L., Macete, E., Alonso, P. L., Rodrigueza, J. M. and Menendez, C. 2013. Breast milk and gut microbiota in African mothers and infants from an area of high HIV prevalence. PLoS ONE 8:e80299.   DOI
25 Fitzstevens, J. L., Smith, K. C., Hagadorn, J. I., Caimano, M. J., Matson, A. P. and Brownell, E. A. 2017. Systematic review of the human milk microbiota. Nutr. Clin. Pract. 32:354-364.   DOI
26 Gao, Z., Perez-Perez, G. I., Chen, Y. and Blaser, M. J. 2010. Quantitation of major human cutaneous bacterial and fungal populations. J. Clin. Microbiol. 48:3575-3581.   DOI
27 Gao, Z., Tseng, C., Pei, Z. and Blaser, M. J. 2007. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. USA. 104:2927-2932.   DOI
28 Collado, M. C., Laitinen, K., Salminen, S. and Isolauri, E. 2012. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72:77-85.   DOI
29 Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. and Dewhirst, F. E. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:5721-5732.   DOI
30 Bertotto, A., Gerli, R., Castellucci, G., Scalise, F. and Vaccaro, R. 1991. Human milk lymphocytes bearing the gamma/delta T-cell receptor are mostly delta TCS1-positive cells. Immunology 74:360-361.
31 Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. and Knight, R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694-1697.   DOI
32 Fernandeza, L., Langaa, S., Martina, V., Maldonadoa, A., Jimeneza, E., Martind, R. and Rodrigueza, J. M. 2013. The human milk microbiota: origin and potential roles in health and disease. Pharmacol. Res. 69:1-10.   DOI
33 Fetherston, C. 2001. Mastitis in lactating women: physiology or pathology? Breastfeed. Rev. 9:5-12.
34 Heikkila, M. P. and Saris, P. E. 2003. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95:471-478.   DOI
35 Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J. and Young, A. C., NISC Comparative Sequencing Program, Bouffard, G. G., Blakesley, R. W., Murray, P. R., Green, E. D., Turner, M. L. and Segre, J. A. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190-1192.   DOI
36 Gronlund, M. M., Gueimonde, M., Laitinen, K., Kociubinski, G., Gronroos, T., Salminen, S. and Isolauri, E. 2007. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin. Exp. Allergy 37:1764-1772.   DOI
37 Gueimonde, M., Laitinen, K., Salminen, S. and Isolauri, E. 2007. Breast milk: a source of bifidobacteria for infant gut development and maturation. Neonatology 92:64-66.   DOI
38 Xuan, C., Shamonki, J. M., Chung, A., Dinome, M. L., Chung, M., Sieling, P. A. and Lee, D. J. 2014. Microbial dysbiosis is associated with human breast cancer. PLoS ONE 9:e83744.   DOI
39 Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. and Martinez-Costa, C. 2014. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34:599-605.   DOI
40 Kvist, L. J. 2010. Toward a clarification of the concept of mastitis as used in empirical studies of breast inflammation during lactation. J. Hum. Lact. 26:53-59.   DOI
41 Yang, F., Zeng, X., Ning, K., Liu, K. L., Lo, C. C., Wang, W., Chen, J., Wang, D., Huang, R., Chang, X., Chain, P. S., Xie, G., Ling, J. and Xu, J. 2012. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J. 6:1-10.   DOI
42 Macpherson, A. J. and Uhr, T. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662-1665.   DOI
43 Kvist, L. J., Wilde Larsson, B., Hall-Lord, M. L., Steen, A. and Schalen, C. 2008. The role of bacteria in lactational mastitis and some considerations of the use of antibiotic treatment. Int. Breastfeed. J. 3:6.   DOI
44 Langa, S. 2006. Interactions between lactic acid bacteria, intestinal epithelial cells and immune cells. Development of in vitro models. Ph.D. dissertation. Complutense University of Madrid, Madrid, Spain.
45 Latuga, M. S., Stuebe, A. and Seed, P. C. 2014. A review of the source and function of microbiota in breast milk. Semin. Reprod. Med. 32:68-73.   DOI
46 Martin, R., Jimenez, E., Heilig, H. G., Fernandez, L., Marin, M. L., Zoetendal, E. G. and Rodriguez, J. M. 2009. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microb. 75:965-969.   DOI
47 Martin, R., Langa, S., Reviriego, C., Jimenez, E., Marin, M. L., Olivares, M., Boza, J., Jimenez, J., Fernandez, L., Xaus, J. and Rodriguez, J. M. 2004. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci. Tech. 15:121-127.   DOI
48 Tusar, T., Zerdoner, K., Bogovic Matijasic B., Paveljsek, D., Benedik, E., Brantanic, B., Fidler, N. and Rogelj, I. 2014. Cultivable bacteria from milk from Slovenian breastfeeding mothers. Food Technol. Biotech. 52:242-247.
49 Thomsen, A. C., Espersen, T. and Maigaard, S. 1984. Course and treatment of milk stasis, noninfectious inflammation of the breast, and infectious mastitis in nursing women. Am. J. Obstet. Gynecol. 149:492-495.   DOI
50 Thomsen, A. C., Hansen, K. B. and Moller, B. R. 1983. Leukocyte counts and microbiological cultivation in the diagnosis of puerperal mastitis. Am. J. Obstet. Gynecol. 146:938-941.   DOI
51 Urbaniak, C., Angelini, M., Gloor, G. B. and Reid, G. 2016. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4:1.   DOI
52 Van Niekerk, E., Autran, C. A., Nel, D. G., Kirsten, G. F., Blaauw, R. and Bode, L. 2014. Human milk oligosaccharides differ between HIV-infected and HIV uninfected mothers and are related to necrotizing enterocolitis incidence in their preterm very-low-birth-weight infants. J. Nutr. 144:1227-1233.   DOI
53 Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J., Falkow, S., Valdivia, R., Brown, W., Le, M., Berggren, R., Parks, W. T. and Fang, F. C. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804-808.   DOI
54 Ward, T. L., Hosid, S., Ioshikhes, I. and Altosaar, I. 2013. Human milk metagenome: a functional capacity analysis. BMC Microbiol. 13:116.   DOI
55 Biagi, E., Quercia, S., Aceti, A., Beghetti, I., Rampelli, S., Turroni, S., Faldella, G., Candela, M., Brigidi, P. and Corvaglia, L. 2017. The bacterial ecosystem of mother's milk and infant's mouth and gut. Front. Microbiol. 8:1214.   DOI