• Title/Summary/Keyword: gases

Search Result 4,044, Processing Time 0.035 seconds

Comparative Analysis of arterial Gases and Acid-base status in Patients with Congenital and Acquired Heart Disease at Preoperative Period, During Extracorporeal Circulation. and Postoperative Period (선천성 및 후천성 심질환 환자에서 체외순환 전, 중, 후의 동맥혈 가스의 비교 분석)

  • 이동석;이봉근;김송명
    • Journal of Chest Surgery
    • /
    • v.34 no.11
    • /
    • pp.831-842
    • /
    • 2001
  • Background: Patients with cardiac diseases who have structural defects in their heart bring about metabolic insult such as preoperative acid-base imbalance. Cardiac operation requires many nonphysiologic procedures such as extracorporeal circulation, hypothermia, and hemodilution. We studied the acid-base status of surgical heart diseases pre-operatively, during extracorporeal circulation, and post-operatively and researched the treatment indications of acid-base disturbances. Material and Method: From January 1997 to May 1999, fifty two cases of open heart surgery were carried out under extracorporeal circulation, which divided into a set of pediatric and adult groups, congenital and acquired groups, non-cyanotic and cyanotic groups, The $\alpha$ -stat arterial blood gas analysis was done in each group during the preoperative period, during the operation with extracorporeal circulation, and during the postoperative period. Result: Before surgery, all patients present metabolic acidosis, PaO2 was low in adult group and acquired group and compensatory respiratory alkalosis was noted in cyanotic group. During extracorporeal circulation, adult group revealed alkalosis and normal in acquired group. Pediatric group presents low Pa$CO_2$, metabolic acidosis and respiratory alkalosis. Congenital group and non-cyanotic group showed non-compensatory alkalosis trend and non-compensatory respiratory acidosis were observed in cyanotic group during extracorporeal circulation. Postoperative acid-base status of adult group was recovered to normal and the standard bicarbonate was increased in the acquired group. All of the pediatric, congenital non-cyanotic, and cyanotic groups revealed the lack of buffer base.

  • PDF

Effect of Thyroid Hormone on the Ischemia-Reperfusion Injury in the Canine Lung (갑상선 호르몬이 잡견 폐장의 허혈-재관류 손상에 미치는 영향)

  • 김영태;성숙환
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.637-647
    • /
    • 1999
  • Background: Ischemia-reperfusion injury is one of the major contributing causes of early graft failure in lung transplantation. It has been suggested that triiodothyronine (T3) may ameliorate ischemia-reperfusion injury to various organs in vivo and in vitro. Predicting its beneficial effect for ischemic lung injury, we set out to demonstrate it by administering T3 into the in situ canine ischemia-reperfusion model. Material and Method: Sixteen adult mongrel dogs were randomly allocated into group A and B. T3 $(3.6\mug/kg)$ was administered before the initiation of single lung ischemia in group B, whereas the same amount of saline was administered in group A. Ischemia was induced in the left lung by clamping the left hilum for 100 minutes. After reperfusion, various hemodynamic parameters and blood gases were analyzed for 4 hours while intermittently clamping the right hilum in order to allow observation of the injured left lung function. Result: Arterial oxygen partial pressure $(PaO_2)$ decreased 30 minutes after reperfusion and recovered gradually thereafter in both groups. In group B the decrease of $PaO_2$ was less marked than in group A. The recovery of $PaO_2$ was faster in group B than in group A. The differences between the two groups were statistically significant from 30 minutes after reperfusion $(125\pm34$ mmHg and $252\pm44$ mmHg, p<0.05) until the end of the experiment $(178\pm42$mmHg and $330\pm37$ mmHg, p<0.05). The differences in the arterial carbon dioxide pressure, airway pressure and lung compliance showed no statistical significance. The malondialdehyde (MDA) level, measured from the tissue obtained 240 minutes after reperfusion, was lower in group B $(0.40\pm0.04\mu$M) than in group A $(0.53\pm0.05\mu$M, p<0.05). The ATP level of group B $(0.69\pm0.07\mu$M/g) was significantly higher than that of group A $(0.48\pm0.07\mu$M/g, p<0.05). The microscopic exami nation revealed varying degrees of injury such as perivascular neutrophil infiltration, capillary hemorrhage and interstitial congestion. There were no differences in the microscopic findings between the two groups. CONCLUSION T3 has beneficial effects on the ischemic canine lung injury including preservation of oxygenation capacity, less production of lipid peroxidation products and a higher level of tissue ATP. These results suggest that T3 is effective in pulmonary allograft preservation.

  • PDF

Geochemistry of tourmalines in the Ilgwang Cu-W breccia-pipe deposit, Southeastern Gyeongsang Basin (경상남도 일광의 각력파이프형 구리(Cu)광상에서 산출되는 전기석의 지구화학)

  • 양경희;장주연
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.259-270
    • /
    • 2002
  • A small granodiorite-quartz monzonitic stock containing sericitic and propylitic alteration assemblages hosts a Cu-W breccia-pipe deposit in the southeastern Cyeongsang basin. The mineralized breccia-pipe contains angular to subangular brecciated fragments of granitic rocks showing clast-supported textures. An assemblage of quartz, tourmalines, sulfide minerals (mainly chalcopyrite, arsenopyrite and pyrrhotite) and calcite was precipitated as a hydrothermal cement between the brecciated fragments. A tourmaline aureole surrounds the breccia pipe. Extensive tourmalinization of the granitic rocks near and within the pipe and no tourmalinization in the sedimentary and volcanic rocks. The tourmalines are marked by Fe-rich, black charcoal-like schorl (80 mol% schorl relative) nearer the schorl-dravite solid solution. The chemical changes in the hydrothermal fluid are reflected by variations in compositional Boning from cores to rims. They generally contain cores with low values of Fe/(Fe+Mg) and high values of Na/(Na+ca) relative to rims. This is because of an increase Fe and Ca contents toward rims. The main trend of these variations is a combination of the exchange vectors Ca(Fe, Mg) $(NaAl)_{- }$ $_1$ and $Fe^{3}^{+}$ $Al_{[-10]}$ $_1$ It is thought that boiling causes the loss of $H_2$ into the vapor phase resulting in the oxidation of Fe in the aqueous phase. pH of the melt would be one of important controlling factors for the tourmaline stability. The tourmalines could be precipitated when the system evolved to the acidic hydrothermal regime as most hydrothermal brines and acidic gases exsolved from the magma. The Ilgwang tourmaline crystallization is products of hypogene orthomagmatic hydrothermal processes that were strongly pipe-controlled.

Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRF-CMAQ Model in Korea (WRF-CMAQ 모델을 이용한 한반도 CH4 배출의 기여농도 추정 및 검증)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Hong, Sungwook;Chang, Eunmi
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • The purpose of this study was to estimate the contributed concentration of each emission source to $CH_4$ by verifying the simulated concentration of $CH_4$ in the Korean peninsula, and then to compare the $CH_4$ emission used to the $CH_4$ simulation with that of a box model. We simulated the Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to estimate the mean concentration of $CH_4$ during the period of April 1 to 22 August 2010 in the Korean peninsula. The $CH_4$ emissions within the model were adopted by the anthropogenic emission inventory of both the EDGAR of the global emissions and the GHG-CAPSS of the green house gases in Korea, and by the global biogenic emission inventory of the MEGAN. These $CH_4$ emission data were validated by comparing the $CH_4$ modeling data with the concentration data measured at two different location, Ulnungdo and Anmyeondo in Korea. The contributed concentration of $CH_4$ estimated from the domestic emission sources in verification of the $CH_4$ modeling at Ulnungdo was represented in about 20%, which originated from $CH_4$ sources such as stock farm products (8%), energy contribution and industrial processes (6%), wastes (5%), and biogenesis and landuse (1%) in the Korean peninsula. In addition, one that transported from China was about 9%, and the background concentration of $CH_4$ was shown in about 70%. Furthermore, the $CH_4$ emission estimated from a box model was similar to that of the WRF-CMAQ model.

The 'Consequence Analysis' of Variables Affecting the Extent of Damage Caused by Butane Vapor Cloud Explosions (부탄가스 증기운폭발의 피해범위에 영향을 미치는 변수에 관한 고찰)

  • Char Soon-Chul;Choo Kwang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents a 'consequence analysis' for vapor cloud explosions caused by heavy gas leakages from commercially used storage tanks at petrochemical plants. Particularly, this paper emphasizes on evaluating the results of various vapor cloud explosion accidents from Butane storage tanks. Also this paper analyses the impact of variables on the accidents in order to acquire the optimum conditions for variables. $SuperChems^{TM}$ Professional Edition was applied to analyse the impact (If atmospheric and other variables in the situation where vapor cloud continuously disperses from the ground level. Under the assumption that practical operating conditions are selected as a standard condition, and Butane leaks from the storage tank for 15 minutes, the results show that the maximum distance of LFL (Lower Flammable Limit) was 52 meters and overpressure by the vapor cloud explosion was 1 psi at 128.2 meters. It is observed that the impact of the variables on accidental Butane storage tank leakage mainly varied upon atmospheric stability, wind velocity, pipe line size, visible length, etc., and changes in the simulation result occurred as the variables varied. The maximum distance of the LFL (Lower Flammable Limit) increased as the visible length became shorter, the size of the leak became larger, the wind velocity was decreased, and the climatic conditions became more stable. Thus, by analysing the variables that influence the simulation results of explosions of Butane storage tanks containing heavy gases, I am presenting the most appropriate method for 'consequence analysis' and the selection of standards for suitable values of variables, to obtain the most optimal conditions for the best results.

  • PDF

LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology (관행농 쌀 생산체계의 탄소배출량 평가를 위한 전과정평가: top-down 방식의 국가평균값과 bottom-up 방식의 사례분석값 비교)

  • Ryu, Jong-Hee;Jung, Soon Chul;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1143-1152
    • /
    • 2012
  • We established a top-down methodology to estimate carbon footprint as national mean value (reference) with the statistical data on agri-livestock incomes in 2007. We also established LCI (life cycle inventory) DB by a bottom-up methodology with the data obtained from interview with farmers from 4 large-scale farms at Gunsan, Jeollabuk-do province to estimate carbon footprint in 2011. This study was carried out to compare top-down methodology and bottom-up methodology in performing LCA (life cycle assessment) to analyze the difference in GHGs (greenhouse gases) emission and carbon footprint under conventional rice cultivation system. Results of LCI analysis showed that most of $CO_2$ was emitted during fertilizer production and rice cultivation, whereas $CH_4$ and $N_2O$ were mostly emitted during rice cultivation. The carbon footprints on conventional rice production system were 2.39E+00 kg $CO_2$-eq. $kg^{-1}$ by top-down methodology, whereas 1.04E+00 kg $CO_2$-eq. $kg^{-1}$ by bottom-up methodology. The amount of agro-materials input during the entire rice cultivation for the two methodologies was similar. The amount of agro-materials input for the bottom-up methodology was sometimes greater than that for top-down methodology. While carbon footprint by the bottom-up methodology was smaller than that by the top-down methodology due to higher yield per cropping season by the bottom-up methodology. Under the conventional rice production system, fertilizer production showed the highest contribution to the environmental impacts on most categories except GWP (global warming potential) category. Rice cultivation was the highest contribution to the environmental impacts on GWP category under the conventional rice production system. The main factors of carbon footprints under the conventional rice production system were $CH_4$ emission from rice paddy field, the amount of fertilizer input and rice yield. Results of this study will be used for establishing baseline data for estimating carbon footprint from 'low carbon certification pilot project' as well as for developing farming methods of reducing $CO_2$ emission from rice paddy fields.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Optical Properties of SiNx Thin Films Grown by PECVD at 200℃ (200℃의 저온에서 PECVD 기법으로 성장한 SiNx 박막의 열처리에 따른 광학적 특성 변화 규명)

  • Lee, Kyung-Su;Kim, Eun-Kyeom;Son, Dae-Ho;Kim, Jeong-Ho;Yim, Tae-Kyung;An, Seung-Man;Park, Kyoung-Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • We deposited $SiN_x$ thin films by using PECVD technique at $200^{\circ}C$ with various flow ratios of the $SiH_4/N_2$ gases. The photoluminescence measurements revealed that the maximum emission wavelength shifted to long wavelength as the ratio increased, however, positions of the several peak wavelengths, such as 1.9, 2.2, 2.4, and 3.1 eV, were independent on the ratio. Changes of the photoluminescence spectra were measured in the $N_{2}-$, $H_{2}-$, and $O_2$-annealed films. The luminescence intensities increased after the annealing process. In particular, the maximum emission wavelength shifted to short wavelength after $H_{2}-$ or $O_2$-annealing. But there were still several peaks on the spectra of all annealed films, several peak positions remained to be unchanged after the annealing. As for the light emission mechanism, we have considered the defect states of the Si- and N- dangling bonds in the $SiN_x$ energy gap, so that the energy transitions from/to the conduction/valence bands and the defect states in the gap were attributed to the light emission in the $SiN_x$ films. The experimental results point to the possibility of a Si-based light emission materials for flexible Si-based electro-optic devices.

The Effects of Anoxic Treatments on Color and Mechanical Property in Fabrics, Natural Dyed Fabrics, Papers, Natural Dyed Papers and Paints (저산소 농도 살충처리가 직물, 염색 직물, 종이, 염색지 및 채색편의 색상 및 기계적 성질에 미치는 영향)

  • Oh, Joon Suk;Choi, Jung Eun;Noh, Soo Jung;Eum, Sang Wook
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.219-234
    • /
    • 2014
  • Fabrics, natural dyed fabrics, papers, natural dyed papers and paints were examined effects of colors and mechanical properties for materials of museum collections under anoxic treatment. Anoxic conditions using nitrogen and argon were oxygen concentration 0.01%, temperature($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$), 50% RH and exposure time 30 days. Examined fabrics were raw silk fabric, UV irradiated raw silk fabric, degummed silk fabric, UV irradiated degummed silk fabric, cotton fabric, and UV irradiated cotton fabric. Natural dyed silk and cotton fabrics were dyed with fresh indigo, indigo, safflower, gromwell, madder sappanwood, amur cork tree, turmeric, gardenia, barberry root, pagoda tree flower, cochineal, lac, alnus japonica, gallnut, chestnut shell, and combination(indigo and safflower, indigo and amur cork tree, indigo and pagoda tree flower, indigo and sappanwood). Papers were Korean papers(mulberry paper, mulberry(70%) and rice straw(30%) mixed paper), Japanese paper(gampi paper), cotton paper, refined linen paper, cotton, linen & manila mixed fibre furnish, copy paper, news print, and alum sized mulberry paper. Natural dyed papers were dyed with indigo, sappanwood, madder, safflower, gardenia, amur cork tree, and pagoda tree flower. Paints were painted on alum-sized papers and silk fabrics using glue and pigments(azurite, malachite, cinnabar, vermilion, orpiment, gamboge, red lead, haematite, iron oxide red, indigo(lake), lac, cochineal, safflower, madder root lake, celadonite, smalt, ultramarine blue, lapis lazuli, prussian blue, kaolin, lead white, oyster-shell white, and clam-shell white). The color differences(${\Delta}E^*$) of all examined materials were below 1.5 or lowered than control samples after anoxic treatment. The variations of tenacity of yarns of fabrics and natural dyed fabrics after anoxic treatment were within that of standard silk and cotton fabrics. Gases(nitrogen and argon) and temperatures of anoxic treatment did not also affected color differences and variations of tenacity of materials.

Evaluation of Site-specific Potential for Rice Production in Korea under the Changing Climate (지구온난화에 따른 우리나라 벼농사지대의 생산성 재평가)

  • Chung, U-Ran;Cho, Kyung-Sook;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.229-241
    • /
    • 2006
  • Global air temperature has risen by $0.6^{\circ}C$ over the last one hundred years due to increased atmospheric greenhouse gases. Moreover, this global warming trend is projected to continue in the future. This study was carried out to evaluate spatial variations in rice production areas by simulating rice-growth and development with projected high resolution climate data in Korea far 2011-2100, which was geospatially interpolated from the 25 km gridded data based on the IPCC SRES A2 emission scenario. Satellite remote sensing data were used to pinpoint the rice-growing areas, and corresponding climate data were aggregated to represent the official 'crop reporting county'. For the simulation experiment, we used a CERES-Rice model modified by introducing two equations to calculate the leaf appearance rate based on the effective temperature and existing leaf number and the final number of leaves based on day-length in the photoperiod sensitive phase of rice. We tested the performance of this model using data-sets obtained from transplanting dates and nitrogen fertilization rates experiments over three years (2002 to 2004). The simulation results showed a good performance of this model in heading date prediction [$R^2$=0.9586 for early (Odaebyeo), $R^2$=0.9681 for medium (Hwasungbyeo), and $R^2$=0.9477 for late (Dongjinbyeo) maturity cultivars]. A modified version of CERES-Rice was used to simulate the growth and development of three Japonica varieties, representing early, medium, and late maturity classes, to project crop status for climatological normal years between 2011 and 2100. In order to compare the temporal changes, three sets of data representing 3 climatological years (2011-2040, 2041-2070, and 2071-2100) were successively used to run the model. Simulated growth and yield data of the three Japonica cultivars under the observed climate for 1971-2000 was set as a reference. Compared with the current normal, heading date was accelerated by 7 days for 2011-2040 and 20 days for 2071-2100. Physiological maturity was accelerated by 15 days for 2011-2040 and 30 days for 2071-2100. Rice yield was in general reduced by 6-25%, 3-26%, and 3-25% per 10a in early, medium, and late maturity classes, respectively. However, mid to late maturing varieties showed an increased yield in northern Gyeonggi Province and in most of Kwangwon Province in 2071-2100.