Geochemistry of tourmalines in the Ilgwang Cu-W breccia-pipe deposit, Southeastern Gyeongsang Basin

경상남도 일광의 각력파이프형 구리(Cu)광상에서 산출되는 전기석의 지구화학

  • 양경희 (부산대학교 자연과학대학) ;
  • 장주연 (부산대학교 자연과학대학)
  • Published : 2002.12.01

Abstract

A small granodiorite-quartz monzonitic stock containing sericitic and propylitic alteration assemblages hosts a Cu-W breccia-pipe deposit in the southeastern Cyeongsang basin. The mineralized breccia-pipe contains angular to subangular brecciated fragments of granitic rocks showing clast-supported textures. An assemblage of quartz, tourmalines, sulfide minerals (mainly chalcopyrite, arsenopyrite and pyrrhotite) and calcite was precipitated as a hydrothermal cement between the brecciated fragments. A tourmaline aureole surrounds the breccia pipe. Extensive tourmalinization of the granitic rocks near and within the pipe and no tourmalinization in the sedimentary and volcanic rocks. The tourmalines are marked by Fe-rich, black charcoal-like schorl (80 mol% schorl relative) nearer the schorl-dravite solid solution. The chemical changes in the hydrothermal fluid are reflected by variations in compositional Boning from cores to rims. They generally contain cores with low values of Fe/(Fe+Mg) and high values of Na/(Na+ca) relative to rims. This is because of an increase Fe and Ca contents toward rims. The main trend of these variations is a combination of the exchange vectors Ca(Fe, Mg) $(NaAl)_{- }$ $_1$ and $Fe^{3}^{+}$ $Al_{[-10]}$ $_1$ It is thought that boiling causes the loss of $H_2$ into the vapor phase resulting in the oxidation of Fe in the aqueous phase. pH of the melt would be one of important controlling factors for the tourmaline stability. The tourmalines could be precipitated when the system evolved to the acidic hydrothermal regime as most hydrothermal brines and acidic gases exsolved from the magma. The Ilgwang tourmaline crystallization is products of hypogene orthomagmatic hydrothermal processes that were strongly pipe-controlled.

경상남도 일광지역의 각력파이프형 구리(Cu)광상은 화강암질암 성분의 암주내에 배태되어 있으며, 모암인 화강암질암은 변질되어 있다. 암흑색의 전기석은 각력파이프를 중심으로 교대 후광을 형성하면서, 석영, 황동석, 유비철석, 자류철석, 방연석, 반동석등과 함께 각력파이프내의 모암인 화강암질암 각력들사이의 기질부를 충전하면서 광맥을 형성하거나, 모암인 장석, 흑운모를 치환교대하면서 산출된다. 각력내(광맥)에서 형성된 전기석은 조립에서 세립질의 자형으로, 침상 내지 깃털 모양으로 산출되며, 다색성 체계는 대체로 짙은 청색과 녹색을 나타낸다. 변질된 모암에서 산출되는 전기석은 타형이며, 등립질의 이차 (secondary) 석영과 함께 방사상의 연정을 이루는 것이 특징적으로 관찰된다. 전기석은 Fe성분이 풍부한, 흑색의 스코올(schorl)(80mol% schorl relative)이며, 비교적 단순한 화학조성을 갖는다. 전기석의 누대구조에 따른 조성 변화는 전기석결정 후기단계에 Fe와 Ca 성분이 증가했음을 나타낸다. 이러한 화학성분의 변화는 Ca에 의한 Na치환, Fe$^{3+}$ 에 의해 Al이 치환되어진 우바이트(uvite)치환(Ca(Fe,Mg)NaAl$_{-1}$)과 페리스코올(ferrischorl)치환 (Fe$^{3+}$ Al$_{-1}$)에 의한 것으로 해석된다. 페리스코올치환이 있었다는 것은 전기석을 침전시킨 열수의 산화상태(oxidation state)가 높아진 것을 반영한다. 이러한 높아진 산화환경은 열수의 비등에 의해 H$_2$ 성분이 열수에서 제거되어져 형성되어졌다. 또한 열수의 비등에 의한 산성(acidic) 휘발성성분 제거는 열수의 pH를 높여 경제성 있는 황화광물의 형성을 용이하게 했다 일광전기석의 산출상태와 지구화학적 특성은 이곳의 전기석은 마그마에서 용리되어진 열수가 각력파이프를 통해 대규모로 이동되어 형성된 생산물이며, 마그마에서 산성성분의 유체가 용리되어 산성열수체계를 형성하고 난 후, 전기석의 침전이 시작되었음을 보여준다 광화대와 변질대를 형성한 일광의 열수체계는 마그마(orthomagmatic), 심부(hypogene) 기원의 열수에 의해 형성되어졌음을 나타낸다.

Keywords

References

  1. 대한광산학회지 v.13 일광중석, 동광사의 광화작용과 각력파이프의 성인에 관한 연구 강주명;전효택;전용원
  2. 자원환경학회지 v.27 상동지역 페그마타이트 및 관계 화성암의 전기적 분화 특징 김수영;문희수
  3. 지구과학회지 v.19 경상남도 일광 삭력 파이프형 구리-중석 광상을 형성한 열수의 기원 : 안전동위원소 증거 김정진;이준동;김인수;양경희;백인성
  4. 광산지질 v.15 한국남부의 백악기말 이후의 화성활동과 광화작용에 대한 판구조론의 적용성 연구(Ⅰ) 민경덕;김옥준;윤석규;이대성;주승환
  5. 지질학회지 v.23 남한의 백악기~제3기 화성활동과 지구조적 의의 이상만;김상욱;진명식
  6. 자원환경학회지 v.28 상동 및 울진지역 화강암질암과 페그마타이트의 광물화학 전효택;손창일
  7. Advances in geology of the porphyry copper deposits Hydrothermal alteration in silicate rocks Beane,R.E.;S.R.Titley(ed.)
  8. Arizona Geological Society Digest v.20 Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits. In Porphyry copper deposits of the American cordillera Beane,R.E.;Bodnar,R.J.;Pierce,F.W.(ed.);Bohm,J.G.(ed.)
  9. Geochemistry of hydrothermal ore deposits(2rd ed.) Magmas and hydrothermal fluids Burnham,C.W.;H.L.Barnes(ed.)
  10. Am. Minera. v.74 Vector representation of tourmaline compositions Burt,D.
  11. Peru. Econ. Geol. v.72 Mineralogic and fluid inclusion studies of the Turmalina Cu-Mo-bearing breccia pipe, Northern Carson,s.r.;Sawkins,F.J.
  12. Econ. Environ. Geol. v.27 Petrochemical study of the gadaeri granite in Ulsan area, Kyeongsang Province Choi,S.;Wee,S.
  13. Journal of Geophysical Research v.96 no.B5 Can economic porphyry copper mineralization be generated by a typical calc-alka-line melt? Cline,J.S.;bodnar,R.J. https://doi.org/10.1029/91JB00053
  14. Econ. Ceol. v.89 Direct evolution of brine from a crystallizing melt at the Questa, New Mexico, Molybdenum deposit Cline,J.S.;Bodnar,R.J.
  15. Economic Geology v.80 no.1 Chemical evolution and mineral deposition n boiling hydrothermal systems Drummond,S.E.;Ohmoto,H. https://doi.org/10.2113/gsecongeo.80.1.126
  16. Economic Geology v.72 no.5 The geology, mineralization, and alteration of Ilkwang mine, Republic of Korea. A Cu-W-Bearing tourmaline breccia pipe Fletcher,c.J.N. https://doi.org/10.2113/gsecongeo.72.5.753
  17. Economic Geology v.91 no.4 Trace element in tourmaline from massive sulfide deposits and tourmalineties: Geochemical controls and exploration applications Griffin,W.L;Slack,J.f.;Ramsden,A.R.;Win,T.T.;Ryan,C.G. https://doi.org/10.2113/gsecongeo.91.4.657
  18. The geology of ore deposits Guilbert,J.M.;Park.F.F.Jr.
  19. Contributions to Mineralogy and Petrology v.112 no.2-3 Tourmaline in low grade clastic metasedimentry rock: an example of the petrogenetic potential of tourmaline Henry,D.J.;Dutrow,B.L. https://doi.org/10.1007/BF00310455
  20. Am. Minearal. v.70 Tourmaline as a petrogentic indicator mineral, Am example from the stau-rolite-grade metapelites of NW Maine Henry,D.J.;Guidotti,C.V.
  21. Economic Geology v.93 no.1 Paragenesis and chemistry of Multistage Tourmaline Formation in the Sullivan Pb - Zn -Ag Deposit, British Columbia Jiang,S.Y.;Slack,J.F.;Shaw,D.R. https://doi.org/10.2113/gsecongeo.93.1.47
  22. M.S. thesis, Seoul National University Geochemistry and copper mineralization of the granodiorite at Ilkwang Mine Gyeongsang-Namdo, Korea Jin,M.S.
  23. J. Geol. Soc. Korea v.21 Geochemistry of the Cretaceous to elrly Tertiary granitic rocks in southern Korea Jin,M.S.
  24. Mining Geol. v.31 Granitic magmatism and associated mineralization in the Gyeongsang Basin, Korea Jin,M.S.;Kim,S.Y.;Lee,J.S.
  25. Am. Mineral. v.71 Tourmaline as recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota Jolliff,B.L.;Papike,J.J.;Shearer,C.K.
  26. PhD. thesis, Pusan National Uinversity Mineralogical, geochemical and Sr-Nd isotopic characteristics of the Namsan A-type and Gyeongju I-type granitic rocks in the Kyongsang basin, Korea Koh,J.S.
  27. Economic Geology v.90 no.3 Chemical variation and significance of tourmaline from southwest England London,D.;Manning,D.A. https://doi.org/10.2113/gsecongeo.90.3.495
  28. Economic Geology v.65 no.4 Lateral and vertical alteration-mineralization zoning in porphyry ore deposits Lowell,J.D.;Guilbert,J.M. https://doi.org/10.2113/gsecongeo.65.4.373
  29. Contributions to Mineralogy and Petrology v.102 no.3 Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks Morgan,G.B.;London,D. https://doi.org/10.1007/BF00373721
  30. Geochimica et Cosmochimica Acta v.48 no.12 Pegmatite/wallrock interactions, Black Hills, South Dakota: Progressive boron metasomatism adjacent to the Tip Top Pegmatite Shearer,C.K.;Papike,J.J.;Simon,S.B.;Laul,J.C.;Christian,R.P. https://doi.org/10.1016/0016-7037(84)90306-5
  31. Mining Geology Special Issue v.8 Evidence for porphyry-type mineralization in southern Korea Sillitoe,R.H.
  32. Economic Geology v.66 no.7 Geologic, minero-logic and fluid inclusion studies relating to the orgin of copper-bearing tourmaline breccia pipes, Chile Sillitoe,R.H.;Sawkins,F.J. https://doi.org/10.2113/gsecongeo.66.7.1028
  33. Reviews in Mineralogy v.33 Tourmaline associations with hydrothermal ore deposits Slack,J.F.
  34. Economic Geology v.88 no.3 Origin and significance of tourmaline - rich rocks in the Broken Hill district, Australla Slack,J.F.;Palmer,M.R.;Stevens,B.P.J.;Barnes,R.G. https://doi.org/10.2113/gsecongeo.88.3.505
  35. Econ. Geol. v.72 A sulfur isotopic and fluid inclusion study of the Cu-W-bearing tourmaline breccia pipe, Ilkwang mine, Republic of Korea So,C.S.;Shelton,K.L.
  36. Economic Geology v.79 no.7 Tourmalines from Appalachian-Caledonian massive sulfide deopsit, Textual, chemical, and isotopic relationships Taylor,B.E.;Slack,J.F. https://doi.org/10.2113/gsecongeo.79.7.1703
  37. Chemical Geology v.153 no.1 Chemical and boron composition of magmatic and hydrothermal tourmalines form Sinceni granite-pegmatite system in Swaziland Trumbull,R.;Chaussidon,M. https://doi.org/10.1016/S0009-2541(98)00155-7
  38. Ore Geology Reviews v.14 no.3 The san Jorge porphyry copper deposit, Meddoza, Argentina: a combination of orthomagmatic and hydrothermal mineralization Williams,W.C.;Meissl,E.;Madrid,J.;Machuca,B.C. https://doi.org/10.1016/S0169-1368(99)00006-2
  39. J. Petrol. v.4 Geochemical constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization: an Example from fault breccis at Roche, SW England Williamson,B.J.;Spratt,J.;Adams,J.T.;Tindle,A.G.;Stanley,C.J.
  40. Contributions to Mineralogy and Petrology v.130 no.1 Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite Wolf,M.B.;London,D. https://doi.org/10.1007/s004100050346
  41. J. Geol. Korea v.32 Fluid inclusions trapped in quartz veins and granitic rocks from Pusan-Kyeongju area Yang,K.
  42. International Geology Review v.36 no.7 Magmatic-hydrothermal evolution in the bottoms of porphyry copper systems: evidence from the silicate melt and aqueous fluid inclusions in the Gyeongsang Basin, South Korea Yang,K.;Bodnar,R.J. https://doi.org/10.1080/00206819409465478
  43. Geosci. J. v.1 Fluid inclusions of the ilkwang Cu-W-bearing breccia-pipe deposit Yang,K.;Lee,J.