• Title/Summary/Keyword: gas toxicity

Search Result 194, Processing Time 0.021 seconds

A Study on Toxicity Evaluation of Combustion Gases Released from the Residental Container Fire - Efficiency Test for the Fire Gas Mask Filters (주거용 컨테이너 화재시 발생되는 연소가스의 독성 평가에 관한 연구 - 화재용 방독면 filter의 성능평가를 중심으로)

  • Lee Jung Yun;Kim Jeong Hun;Kim Youn-Hi;Jung Ki Chang
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.48-54
    • /
    • 2004
  • The recent Ire incident in an elementary school of Chonan city causes the media focus on the fire safety of residential container buildings. In this study, real fire tests were conducted in this kind of buildings. Combustion products including $O_2,\; CO_2,\;CO,\;NOx,\;SOx,\;HCI,\;HCN$ were measured, and blood samples of lab rats were analyzed in terms of Co-Hb, Glucose, AST(GOT), ALT(GPT), in order to investigate the hazard-reduction effects of employing gas mask protected with filter during the fire emergency of residential container buildings. According to the test results, whether or not employing the filter showed a sheer difference in the toxicity of the fire-induced gases, and then the importance of wearing a gas mask was evidently demonstrated.

A Study for Bioassay on the HBr Combustion Toxity (생물학적 분석을 통한 HBr의 연소 독성에 관한 연구)

  • Cho, Nam-Wook;Shin, Hyun-Joon;Lee, In-Ku;Oh, Eun-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.545-551
    • /
    • 2012
  • Due to the use of polymeric materials in construction materials, the fire combustion gases that occur in the fire are various. The one of combustion gases, HBr is measured to evaluate the toxicity of the combustion gases in the FTP Code Part 2, Standard NES 713 and Standard BS 6853. According to the MSDS, Inhalation of HBr gas especially cause burn, respiratory dysfunction, headache, etc. The people who are exposed to 50ppm of HBr gas, very irritant gas may also frequently result in both immediate death and post-exposure deaths due to pulmonary complications. In this paper, we conduct a research on the combustion toxicity of HBr gas hazardous test which is motility measurement of the mice exposed to the HBr standard gas comparing the biological analysis result.

A Research of Risk Assessment for Urethane Fire Based on Fire Toxicity (연소 독성 기반 우레탄 화재의 위험성 평가 연구)

  • Kim, Sung-Soo;Cho, Nam-Wook;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • Fire in the risk management subject belongs to high risk disaster which accompanies personnel and materiel loss. So, management of disaster and safety is required to include fire prevention activities, fire risk prediction and investment of safety management expense. Combustion toxicity is required by gas toxicity test (KS F 2271), to minimize human damage. In this study, gas toxicity test were experimented with regard to urethane sample (Depth 5~25 mm) to obtain basic data. Fire effluent exposing to experimental animal were analyzed by FT-IR (Fourier transform infrared spectroscopy). Combustion toxicity index Lethal Fractional Effective Dose ($L_{FED}$) of ISO 13344 was calculated. According to the result of calculating Lethal Concentration 50% ($LC_{50}$) based on $L_{FED}$, $LC_{50}$ of urethane sample containing certain level of fire load is confirmed as $118{\sim}129g/m^3$. Through this study, applicability of this method was confirmed for fire risk assessment. This method can provide information to predict human damage by toxicity combustion gas for securing safety.

Subacute Inhalation Toxicity of 3-Methylpentane

  • Chung, Yong Hyun;Shin, Seo-Ho;Han, Jeong Hee;Lee, Yong-Hoon
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.245-250
    • /
    • 2016
  • 3-Methylpentane ($C_6H_{14}$, CAS No. 96-14-0), isomer of hexane, is a colorless liquid originating naturally from petroleum or natural gas liquids. 3-Methylpentane has been used as a solvent in organic synthesis, as a lubricant, and as a raw material for producing carbon black. There is limited information available on the inhalation toxicity of 3-methylpentane, and the aim of this study was to determine its subacute inhalation toxicity. According to OECD Test Guideline 412 (subacute inhalation toxicity: 28-day study), Sprague Dawley rats were exposed to 0, 284, 1,135, and 4,540 ppm of 3-methylpentane for 6 hr/day, 5 days/week for 4 weeks via whole-body inhalation. Mortality, clinical signs, body weights, food consumption, hematology, serum chemistry, organ weights, and gross and histopathological findings were compared between control and all exposure groups. No mortality or remarkable clinical signs were observed during the study. No gross or histopathological lesions, or adverse effects on body weight, food consumption, hematology, serum chemistry, and organ weights were observed in any male or female rats in all exposure groups, although some statistically significant changes were observed in food consumption, serum chemistry, and organ weights. In conclusion, the results of this study indicate that no observable adverse effect level (NOAEL) for 3-methylpentane above 4,540 ppm/6 hr/day, 5 days/week for rats.

A Study on DNA Degeneration by Comet Assay & Pathological Observation for Mouse Which were Exposed HCN Gases from Fire (화재로 인한 HCN 가스에 노출된 마우스의 병리학적 관찰 및 단세포 전기영동법을 사용한 DNA 변성 추적에 관한 연구)

  • Cho, Nam-Wook;Oh, Eun-Ha;Hwang, Sung-Kwy
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.7-16
    • /
    • 2012
  • Combustion Toxic Effects among several factors of risk encountered during fire are important in the evacuation and final survival, and they are broader and fatal than the direct damages caused by flame. Most studies on fire toxicity until the present are limited to fatality, mainly deaths by fire through pathological research. In this study, it is conducted as a fundamental experiment to address 3 principles of animal experiment and to provide an alternative test to animal testing that is regulated by national building codes and it was conducted through approval by the animal testing ethics committee. Hence, in this study average time of activity stop was measured after directly inhaling toxic gases (HCN) to laboratory animals (mice) through gas toxicity test (KS F 2271) for major asphyxiating gases(HCN) which are produced during fire combustion. effects of Combustion toxic gases on body were quantitatively analyzed through changes in internal organs and hematological analysis, and electrophoresis of a single cell of these laboratory animals. Biological conclusion of combustion toxicology is drawn through approaches (pathological examination, blood test, blood biochemical test, electrophoresis analysis of single cell) which could not confirmed in existing gas toxicity test.

Working Environment and Risk Assessment of Gasoline in Workplace (Gasoline 취급 사업장의 작업환경 측정 및 위해성 평가)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • To protect the workers' health, we evaluated the hazards of gasoline which the large amounts of use and lack of information, and perform the risk assessment through the measurement of working environment. It is estimated the reproductive toxicity, and has germ cell mutagenicity class 1B, also IARC 2B, ACGIH A3 with carcinogenicity. With working environment, it is measured as below the TLV-TWA $900mg/m^3$. It is also calculated $0.3mg/m^3$ as carcinogenicity RfC (worker), $2.7mg/m^3$ as chronic inhalation toxicity RfC (worker), $2.7mg/m^3$ as developmental toxicity RfC (worker). From all of these results, it is calculated that the risks are 459, 51 and 51 as carcinogenicity, chronic inhalation toxicity and developmental toxicity, respectively. It is concluded that the risk of gasoline is evaluated over 1.

Effects of Gamma-Irradiated Korean Ginseng on Fertility and General Reproductive Toxicity in Rats (방사선 조사 인삼이 랫드의 수태능 및 일반 생식독성에 미치는 영향에 관한 연구)

  • 박귀례;한순영;김판기;이유미;신재호;장성재
    • Toxicological Research
    • /
    • v.17 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Korean ginseng products have been fumigated with ethylene oxide (EO) for sterilization and prolongation of storage periods. However, there had been controversies indicating that the consumption of food treated with EO might cause harmful effects in human. Since, in Korea the use of EO gas for food treatment was banned in 1991. Since then, irradiation technique has been developed as an alternative. This study was carried out to investigate the effects of irradiated ginseng on fertility, and reproductive and developmental toxicity. Either EO gas fumigated or gamma-irradiated ginseng was administered to male rats by oral gavage for 63 days during the premating period. Female rats were administered from 14 days before mating to day 20 of gestation or to day 21 of lactation. The exposure amount of irradiation used was 5, 10 and 30 kGy, respectively. There were no treatment related changes of darns in clinical signs, and parturition. No treatment related changes in food consumption, body/organ weights, male/female reproductive and fertility performances were observed. F1 fetuses showed no external abnormality. Reflex/sensory junctions, physical/behavioral development, and reproductive performance of F1 rats were not adversary affected. The results of this study show that gamma-irradiated ginseng, up to 30 kGy, has no adverse effects on the fertility, reproduction and development in Wistar rats.

  • PDF

Volatilization and Toxicity Control of Heavy Metal Chlorides under Combustion Conditions (연소조건에서 중금속 염화물의 휘발 및 유독성 제어)

  • 서용칠
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.175-182
    • /
    • 1993
  • Volatilization of toxic heavy metals, especially, metal chlorides at elevated temperatures in oxidation conditions was observed using a thermogravimetric furnace since such metal chlorides used to be a cause for the disease of industrial workers by their toxicity and high volatile extent. Most of tested metal chloride compounds were evaporated or decomposed into gas phase at elevated temperatures ranged from 200~90$0^{\circ}C$, while CrCl$_3$ and NiC1$_2$became stable with converting into oxide forms. A kinetic model for evaporation/condensation could predict maximum evaporation flux and the calculated values were compared with real evaporation flux. The ratio of two fluxes could be explained as the fraction of impinging gas molecules to the condensing surface( $\alpha$ ) and obtained in the range of 10$^{-3}$ ~10$^{-9}$ for the experimented toxic heavy metal chlorides. This ratio might be used to define the volatile extent or toxicity of such toxic metal compounds. The schemes to avoid volatilization of toxic heavy metals Into the atmosphere were suggested as follows ; 1 ) controlling the compositions of metals and Chlorine produced substances( such as PVC ) in the treated materials using a reverse estimation from regulatory limit and characteristics of a processing facility, 2) Installation of wet type devices such as a scrubber for condensing the metal compounds.

  • PDF

An Experimental Investigation on Combustion Characteristics of the Knockdown Building (조립식 건축물의 화재특성연구)

  • Lee, Jung-Yun;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • The recent fire incident in an elementary school of Chonan city causes the media focus on the fire safety of residential container buildings. In this study, real fire tests were conducted in this kind of buildings. Combustion products including $O_2$, $CO_2$, CO, $NO_x,$, $SO_x$, HCI, HCN were measured, in order to investigate the hazard-reduction effects of employing gas mask protected with filter during the fire emergency of residential container buildings. According to the test results, whether or not employing the filter showed a sheer difference in the toxicity of the fire-induced gases, and then the importance of wearing a gas mask was evidently demonstrated.

The improvement of quantification method of toxic gas components from the materials of the railway vehicle (철도차량용 재료의 독성성분 정량화 향상기법 연구)

  • Lee, Cheul-Kyu;Jung, Woo-Sung;Lee, Duck-Hee;Lee, Kwan-Sub;Park, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1314-1317
    • /
    • 2007
  • This study is on the fire resistance evaluation method, expecially on the toxicity of smoke gases generated from the fire, of materials for railway car and structures. Until now, Although international standard related to the quantifying evaluation method of smoke gas is provided but the specific procedure is not contained. On this reason, Test results of toxicity show deviation with the different technique being applied. For now, In advanced railway country, various instrument, like ion chromatography and etc., is used but FT-IR is recommended due to its lots of advantages. while FT-IR has a lot of strong points but still has some problems like water vapor interferences. In this paper, To improve credibility and repeatability of FT-IR it contains some technical solutions in quantifying the 8 toxic components.

  • PDF