• Title/Summary/Keyword: gas seal

Search Result 136, Processing Time 0.029 seconds

Development of Static Seal for a Liquid Rocket Engine (액체 로켓 엔진 스태틱 실 개발)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Chung, Taegeum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • Static seals are used to seal high temperature gas and cryogenic fluid under high pressure, at interfaces between liquid rocket engine components such as combustion chamber, turbopump, gas generator, valves, etc. As thermal expansion and contraction at assembly interfaces cause undesirable leakage under cryogenic and high temperature environments, static seals applied for sealing of joint interfaces without relative motion should be designed properly. The additional function of rotation at the sealing face is also required for static seals, when the spherical flange is used for improvement of assembly at misalignment interfaces. In this study, structural analysis and leak tightness test of simulating test rig for several important interfaces are performed, to verify structural integrity of static seals.

A study on simultaneous injection molding and two-color coating for car gas cap cover (자동차 주유구 커버에 대한 사출성형과 2색 코팅 동시 구현에 관한 연구)

  • Bae, Hyung-Sup;Park, Dong-Hyun;Kim, Boo-Kon;Seo, Chang-Ho;Heo, Won-Geun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2021
  • Mold design for in-mold coating was carried out to achieve simultaneous injection molding and two-color coating for car gas cap cover. The developed mold includes one core and three cavities which are composed of a substrate cavity and two coating cavities. To provide a sealing edge for complete seal during the second coating, the first coated material was used at the boundary between the first coating and the second one, and injection molded substrate was used at the parting line. The materials used were PC/ABS for substrate and 2-component Polyurea for coating. Through experiments, it was found that the suggested sealing edges were effective for complete seal during the second coating. In cavity pressure traces, there were three peaks caused by mold closing, coating-material injection and cleaning-piston advancement inside the mixing head. The cavity pressure increased with decreasing coating thickness.

Design and Characteristics of cryogenic ball valve (초저온 볼 밸브 설계 및 특성)

  • Kim, Dong-Soo;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.666-671
    • /
    • 2007
  • To acquire the safety along with durability of mechanical machinery products, we should consider the structural mechanics such as stress, deformation and dynamic vibration characteristics and identify those important aspects in the stage of preliminary design engineering. This cryogenic ball valve is used to transfer the liquified natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kg/cm^2$. For the cryogenic ball valve, the assurance of structural integrity and operability are essential to meet not only normal, abnormal loading conditions but also functionality during a seismic event. In this thesis, analytical approach and results using finite element analysis and computational method are herein presented to evaluate the aspects of structural integrity along with operability of cryogenic ball valve. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

열가속 열화에 따른 NBR의 산화반응과 기계적 특성

  • Kim, Ki-Yup;Kang, Hyun-Gu;Ryu, Boo-Hyung;Lee, Chung;Im, Ki-Jo
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.434-439
    • /
    • 2003
  • 원전 계통에서는 gas circulator, fuel handling system 등에 수 천여 개의 봉합(seal) 부위가 존재하며, 그 형상 또한 5 mm 에서부터 600 mm로 다양하다. 이러한 sealing 재료는 사용온도가 유리전이온도 이상인 열가소성 수지이며, 유연성 있는 segment의 조합으로 자유운동을 가지게 되는데 이러한 구조는 비교적 낮은 방사선 선량에 대해 취약하며, 원전계통에서는 NBR 및 ethylene-propylene 계열의 높은 내방사선 특성을 가지는 O-ring이 주로 사용되어지며, 10년을 교체시기로 주기적으로 교체하는 실정이다[2]. 이러한 seal 부위는 공정 전체에 걸쳐 다양한 열화요인에 노출되며, 최대 20$0^{\circ}C$의 온도, 압력 40 bar, 연간 1Gy~1MGy의 방사선에 노출된다.(중략)

  • PDF

Thermal stress and Flow Analysis of a Cryogenic Ball Valve (초저온 볼밸브의 열 응력 및 유동해석)

  • Bae, S.K.;Lee, W.H.;Kim, H.S.;Kim, D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.8-13
    • /
    • 2006
  • The high pressure cryogenic ball valve is used to transfer the liquefied natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kgf/cm^2$. In the present work, the temperature distribution and thermal deformation is calculated numerically. The CAR and CFD methods are useful to predict the thermal matter and the inner flow field of high pressure cryogenic ball valve. For this reason, to optimum design of the cryogenic ball valve, the theological behavior of the supplied LNG in a cryogenic valve has been studied. The governing equations are discredited and solved numerically by the finite-volume method and finite-element method. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

A Combination Study on the Elevation Motion Friction Compensation Parameters in Gas Spring (1) (가스 스프링 Elevation 동작 마찰력 보상 변수 조합 연구 (1))

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2017
  • In this study, factor analysis was performed to reduce the friction in the elevation motion of a stand for a 50-inchtelevision. Pipe type cross-section control was used for accurate positioning control of the piston rod. The pipe type was also compared with a labyrinth-type crosssection for the orifice. The frictional force was then reduced using gas seal lip technology. Specifications were chosen, and a volume compensation experiment was carried out using an apparatus for compensating the volume of the cylinder, which is compressed by the volume of the piston rod. Based on CAE and experimental considerations, the labyrinth-type orifice is preferred for reducing friction. For the gas seal lip technology, outer and inner diameters of ${\Phi}20$ and ${\Phi}8$ for the hollow rod were more appropriate when assuming the weight of a 50-inch television to be 30kgf. The third is that the result of total consideration in stability problem and performance of volume compensation for specification decision and volume compensation experiment is determined the final speculation of hollow rod ?8x?4 and riveting system. The last is that the labyrinth orifice is not founded that of the ${\O}0.4{\sim}0.6$ orifice both tests on 300 mm intervals.

Effect of Pressure on Solids Flow Characteristics in Recycle System of a Circulating Fluidized Bed (순환유동층 재순환부 내 고체흐름 특성에 대한 시스템 압력의 영향)

  • Kim, Sung Won;Kim, Sang Done
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.198-204
    • /
    • 2010
  • Solids flow characteristics have been determined in a pressurized solids recycle systems of silica sand particles for the application in a pressurized CFB(PCFB). The solids recycle system is composed of a downcomer(0.10 m i.d. 2.25 m high) and a loop-seal(0.10 m i.d.). The silica sand($d_p=240{\mu}m$, ${\rho}_s=2582kg/m^3$) particles were transported at room temperature and system pressure($P_{sys}$) up to 0.71 MPa using air. Solids mass flux($G_s$) increases with increasing system pressure at constant aeration rate. Pressure gradient, solids velocity and actual gas velocity increase with increasing $P_{sys}$ at constant aeration rate. The Pressure drop number($\Phi$) on pressure gradient in downcomer has been correlated with Transportation number(Tr). Pressure drop across the loop-seal increases with increasing of $G_s$ irrespective of variation of $P_{sys}$. The obtained $G_s$ and Transportation number(Tr) have been correlated with the experimental variables.

Fabrication and Characterization of Composite Sealants for Low Temperature (600∼650°C)SOFCs (저온작동 (600∼650°C) SOFC용 복합밀봉재 제조 및 평가)

  • Lim, Hyun-Yub;Kim, Hyoung-Chul;Choi, Sun-Hee;Kim, Hae-Ryoung;Son, Ji-Won;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.802-806
    • /
    • 2008
  • A proper sealant for low temperature SOFCs should show zero or low leak rates to avoid direct mixing of the fuel and oxidant gases or leakage of fuel gas during the operation of SOFCs. Furthermore, it should be chemically and/or mechanically stable in both oxidizing and reducing environments and chemically compatible with other fuel cell components. In the present work, we developed a novel compressed seal gasket of glass-based composite reinforced with ceramic particulate particles, which can efficiently control the viscous flow of glass matrix as well as the crystallization of glass phase. This novel sealing gasket showed excellent gas tightness under very low compressive load which would be suitable for the operation of SOFCs in the temperature range $600{\sim}650^{\circ}C$.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors (상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성)

  • Son, Sung Real;Go, Kang Seok;Kim, Sang Done
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The chemical-looping combustion(CLC) has advantages of no energy loss for separation of $CO_2$ without $NO_x$ formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about $30kg/m^2s$ by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.