• Title/Summary/Keyword: gas measurement method

Search Result 643, Processing Time 0.034 seconds

Study on Gas Concentration Measurement of O2 and NO Using Calibration-free Wavelength Modulation Spectroscopy in Visible and Mid-Infrared Region (가시광선과 중적외선 영역의 무보정 파장 변조 분광법을 이용한 O2와 NO 가스 농도 측정에 관한 연구)

  • Aran Song;Geunhui Ju;Kanghyun Kim;Jungho Hwang;Daehae Kim;Changyeop Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.70-77
    • /
    • 2023
  • Air environment regulations have been strengthened due to increasing air pollutant emissions, the target of reducing emissions has increased and interest in gas measurement methods is also increasing. The sampling method is mainly used, but due to the spatial and temporal measurement limitations, the laser absorption spectroscopy which is a real-time and in-situ method is in the spotlight. In this study, we studied the wavelength modulation spectroscopy and described the calibration-free algorithm. The developed algorithm was modified to reflect 46 multi-absorption lines and was applied to light absorption signal analysis in visible and mid-infrared regions. In addition, the difference between the modulation parameters of laser was analyzed. As a result of reviewing the performance through O2 and NO gas measurement experiments of various concentration conditions, the linearity was R2O2=0.99999 and R2NO=0.99967.

Development of a Candidate Equipment for Ozone SRP and its Uncertainty Evaluation (오존 SRP의 제작과 측정 불확도 평가)

  • 정규백;우진춘;이진홍
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.313-319
    • /
    • 2001
  • The development of ozone SRP (Standard Reference Photometer) designated as a G-7 project by the Korean Ministry of Environment began 1997 and is now nearly completed. With the completion of the ozone SRP we will not only acquire a qualification to participate in the international ozone calibration system but also enhance calibration credibility of ozone similarly to that of other ambient air pollution monitors. As the ozone SRP uses highly cleaned blank air that can be distinguished from general ozone analyzer, it is possible to reduce errors associated with the determination of ozone via elongation of the absorption length as long as 1 meter In addition, gas chopping method hat been adopted to cut down interference of other substances and time drift. Furthermore, the system has also been modified to minimize the strayed ultra-violet noise along the light path. In this paper, a new method for uncertainty evaluation has been introduced, which is guided by the ISO (International Standard Organization) GUM (Guide to the Expression of Uncertainty in Measurement) through assessments of the uncertainty type B (that was impossible to estimate before) as well as the uncertainty type A (based on statistics).

  • PDF

Investigation of the Swirling Flow Fields of a Gun-Type Gas Burner by the Measurement of a Five-Hole Pressure Probe (5공 압력프로브의 측정에 의한 Gun식 가스버너의 스월유동장 고찰)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-23
    • /
    • 2015
  • The swirling flow fields of a gun-type gas burner(GTGB) without a combustion chamber were measured by a straight-type five-hole pressure probe(FHPP) under the cold flow condition. The three kinds of velocity components and the static pressure were calculated by using a non-nulling calibration method covering the velocity reduction performance of the effective flow attack angle of ${\pm}80^{\circ}$. As a result, the velocity and static pressure measured by a FHPP comparatively shows the better performance on the swirling flow of a GTGB than those measured by X-probe.

Measurement of Calorific Value Using Flame Calorimeter (전자 소자를 이용한 연소열 측정)

  • Lim, Ki-Won;Jun, Jin-Young;Lee, Byeong-Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • Calorific value of mixed gas, like liquefied natural gas (LNG), is strongly depends on its compositions which are affected by the mining place and producing time. The variation in calorific value have an direct influence on the combustion characteristics and performances of boiler, burner, vehicle, power plants etc. Thus, developing experimental method to measure exact calorific value is becoming an issue in the related industrial fields. Flame calorimeter is developed to get calorific value at the dynamic equilibrium state using electric substitution method. Refrigerant-11 carries heat from combustor and/or heater to the Peltier elements which pumped it out to the cooling water. It is found out that error in the measured calorific value of methane is 2.86% compared with the theoretical one. Developed design technique and the experimental data will be applied to design the national standard gas calorific value measuring apparatus.

Experimental Study of the Relationship between Weight Variation and Thermal Conductivity in Polyurethane Foam (단열재의 무게변화와 열전도도와의 상관관계에 관한 실험적 연구)

  • Lee, Hyo-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.241-246
    • /
    • 2015
  • Cellular foamed insulation such as polyurethane foam ages and degrades the thermal conductivity. Aging of foam is a result from the diffusion of gases, initially consisting of $CO_2$ but eventually replaced by air from the environment. The variation of the cell gas content with time is primarily influenced by the increase of thermal conductivity of the cellular foam. The weight of foam also changes as the gas diffuses and exchanges. In this study, a weight measurement method has been proposed to evaluate the effective diffusion coefficients of $CO_2$ and Air, $D_{CO2}=7.08504E-11$ and $D_{air}=4.86086E-12$, respectively and are compared with the gas analysis method.

Synthesis of N-doped Ethylcyclohexane Plasma Polymer Thin Films with Controlled Ammonia Flow Rate by PECVD Method

  • Seo, Hyunjin;Cho, Sang-Jin;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.44-47
    • /
    • 2014
  • In this study, we investigated the basic properties of N-doped ethylcyclohexene plasma polymer thin films that deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) method with controlled ammonia flow rate. Ethylcyclohexene was used as organic precursor with hydrogen gas as the precursor bubbler gas. Additionally, ammonia ($NH_3$) gas was used as nitrogen dopant. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, UV-Visible spectroscopy, and water contact angle measurement. We found that with increasing plasma power, film thickness is gradually increased while optical transmittance is drastically decreased. However, under the same plasma condition, water contact angle is decreased with increasing $NH_3$ flow rate. The FT-IR spectra showed that the N-doped ethylcyclohexene plasma polymer films were completely fragmented and polymerized from ethylcyclohexane.

Automated Cold Volume Calibration of Temperature Variation in Cryogenic Hydrogen Isotope Sorption Isotherm (극저온(20K) 수소동위원소 흡착 등온선의 온도 변화에 대한 자동 저온 부피 교정)

  • Park, Jawoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. $N_2$ or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.

Field Measurement Methods of Stream Reaeration Coefficient - Modified Gas Tracer Method - (Modified Gas Tracer Method를 이용한 하천의 재폭기계수)

  • 조영준;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.547-551
    • /
    • 1998
  • Reaeration coefficient is the physical absorption of oxygen from the atmosphere by water. It is the most important natural means by which a stream replaces the oxygen consumed in the biodegradation of organic wastes, and the rate constant describing this process is the reaeration coefficient, It. Reaeration coefficient is the dominant parameter affecting the use of water quality model. Therefore accurate estimation of the reaeration coefficient is essential for optimum water quality management. There is several method to estimate stream reaeration coefficient. In this study, it would be concluded that SI-peak method is of practical use when applied to small stream, and CRI method is adequate to large stream.

  • PDF

A Study of Heat Flow and Residual Stress Analysis in Pipe-plate Gas Metal Arc Brazing (파이프-평판 GMAB 접합부의 열유동 및 잔류음력 해석에 관한 연구)

  • 이태영;김재웅;이목영;정평석
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.413-422
    • /
    • 2001
  • In this study. two-dimensional heat flow and residual stress in arc brazing to join the pipe and plate structure were analyzed by using a commercialized FEM package. Advantages offered by arc brazing are that strong joints can be produced with lower heat input than that of previous gas metal arc welding and narrower heat affected zone can usually be obtained than that in the case of torch brazing. To investigate the effects of process variables and minimize the thermal effects on the structure, this study presents a method for analyzing the heat flow and residual stress in arc brazing process according to variables such as traveling speed, torch angle and position. The simulation results were compared with the experimental ones to verify the numerical analysis method. The experiments include the measurement of HAZ size from the section of joints and residual stresses by using strain gages named 'section method'. A comparatively good agreement between the results of numerical analysis and experimental ones could be obtained in both of the temperature distribution and residual stress of the brazed structure. Using the proposed numerical analysis method, the process parameters were evaluated to get proper arc brazing conditions.

  • PDF

Experimental Study on the Internal Flow of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브 내부유동의 실험적 연구)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2016
  • This paper presents the flow characteristics of a ball valve used for a gas pipeline. Understanding of the internal flow of a ball valve is an important to analyze the physical phenomena of the valve. Present experimental study was performed by IEC 60534-2-3, the international standard for an industrial control valve testing procedure. Pressure measured at upstream and downstream of the valve, flow-rate and gas temperature passing the inside of the gas pipeline were measured with respect to valve opening rates. Throughout the experimental measurement of the ball valve, empirical equation of the pressure drop between the ball valve according to the mass flow rates is successively obtained using a polynomial curve fitting method. In addition, flow coefficient for determining the valve capacity is also analyzed with respect to valve opening rates using the curve fitting method.