DOI QR코드

DOI QR Code

Automated Cold Volume Calibration of Temperature Variation in Cryogenic Hydrogen Isotope Sorption Isotherm

극저온(20K) 수소동위원소 흡착 등온선의 온도 변화에 대한 자동 저온 부피 교정

  • Park, Jawoo (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
  • 박재우 (국립경남과학기술대학교 에너지공학과, 미래융복합연구소) ;
  • 오현철 (국립경남과학기술대학교 에너지공학과, 미래융복합연구소)
  • Received : 2019.04.30
  • Accepted : 2019.05.14
  • Published : 2019.05.27

Abstract

The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. $N_2$ or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.

Keywords

References

  1. Y. H. Tan, J. A. Davis, K. Fujikawa, N. V. Ganesh, A. V. Demchenko and K. J. Stine, J. Mater. Chem., 22, 6733 (2012). https://doi.org/10.1039/c2jm16633j
  2. G. C. Johan, L. A. A. Peffer and J. Perez-Ramirez, Microporous Mesoporous Mater., 60, 1 (2003). https://doi.org/10.1016/S1387-1811(03)00339-1
  3. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938). https://doi.org/10.1021/ja01269a023
  4. G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli., Catal. Today, 41, 207 (1998). https://doi.org/10.1016/S0920-5861(98)00050-9
  5. W. Zhao, L. Luo, T. Chen, Z. Li, Z. Zhang and M. Fan, IOP Conf. Ser., Mater. Sci. Eng., 368, 012031 (2018). https://doi.org/10.1088/1757-899X/368/1/012031
  6. A.-M. Putz, A. Policicchio, S. Stelitano, P. Sfirloaga, C. Ianasi, R. G. Agostino and S. Cecilia, Fullerenes, Nanotubes, Carbon Nanostruct., 26, 810 (2018). https://doi.org/10.1080/1536383X.2018.1502177
  7. K. Sing, Colloids Surf., A, 187, 3 (2001). https://doi.org/10.1016/S0927-7757(01)00612-4
  8. P. I. Ravikovitch, A. V. Neimark, Colloids Surf., A, 187, 11 (2001). https://doi.org/10.1016/S0927-7757(01)00614-8
  9. H. Oh, Korean J. Mater. Res., 27, 127 (2017). https://doi.org/10.3740/MRSK.2017.27.3.127
  10. P. I. Ravikovitch, D. Wei, W. T. Chueh, G. L. Haller and A. V. Neimark, J. Phys. Chem. B, 101, 3671 (1997). https://doi.org/10.1021/jp9625321
  11. D. Do, H. Do and D. Nicholson, Chem. Eng. Sci., 65, 3331 (2010). https://doi.org/10.1016/j.ces.2010.02.023
  12. J. W. Park and H. Oh. Korean J. Mater. Res, 27, 466 (2017). https://doi.org/10.3740/MRSK.2017.27.9.466
  13. N. WebBook, Thermophysical properties of fluid systems. On the Web. Retrieved Dec 11, 2018 from http://webbook.nist.gov/chemistry/fluid/
  14. H. Oh, Trans. of Korean Hydrogen and New Nergy Society, 27, 349 (2016). https://doi.org/10.7316/KHNES.2016.27.4.349