• Title/Summary/Keyword: gas mask

Search Result 121, Processing Time 0.024 seconds

Bayesian Estimation based K-1 Gas-Mask Shelf Life Assessment using CSRP Test Data (CSRP 시험데이터를 사용한 베이시안 추정모델 기반 K-1 방독면 저장수명 분석)

  • Kim, Jong-Hwan;Jung, Chi-jung;Kim, Hyunjung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper presents a shelf life assessment for K-1 military gas masks in the Republic of Korea using test data of Chemical Materiels Stockpile Reliability Program(CSRP). For the shelf life assessment, over 2,500 samples between 2006 and 2015 were collected from field tests and analyzed to estimate a probability of proper and improper functionality using Bayesian estimation. For this, three stages were considered; a pre-processing, a processing and an assessment. In the pre-processing, major components which directly influence the shelf life of the mask were statistically analyzed and selected by applying principal component analysis from all test components. In the processing, with the major components chosen in the previous stage, both proper and improper probability of gas masks were computed by applying Bayesian estimation. In the assessment, the probability model of the mask shelf life was analyzed with respect to storage periods between 0 and 29 years resulting in between 66.1 % and 100 % performances in accuracy, sensitivity, positive predictive value, and negative predictive value.

Removal of Photoresist Mask after the Cl2/HBr/CF4 Reactive Ion Silicon Etching (Cl2/HBr/CF4 반응성 이온 실리콘 식각 후 감광막 마스크 제거)

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.353-357
    • /
    • 2010
  • Recently, silicon etching have received much attention for display industry, nano imprint technology, silicon photonics, and MEMS application. After the etching process, removing of etch mask and residue of sidewall is very important. The investigation of the etched mask removing was carried out by using the ashing, HF dipping and acid cleaning process. Experiment shows that oxygen component of reactive gas and photoresist react with silicon and converting them into the mask fence. It is very difficult to remove by using ashing or acid cleaning process because mask fence consisted of Si and O compounds. However, dilute HF dipping is very effective process for SiOx layer removing. Finally, we found optimized condition for etched mask removing.

$N_2$ Gas roles on Pt thin film etching using Ar/$C1_2/N_2$ Plasma (Ar/$C1_2/N_2$플라즈마를 이용한 Pt 박막 식각에서 $N_2$ Gas의 역할)

  • 류재홍;김남훈;이원재;유병곤;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.468-470
    • /
    • 1999
  • One of the most critical problem in etching of platinum was generally known that the etch slope was gradual. therefore, the addition of $N_2$ gas into the Ar/C1$_2$ gas mixture, which has been proposed the optimized etching gas combination for etching of platinum in our previous article, was performed. The selectivity of platinum film to oxide film as an etch mask increased with the addition of N2 gas, and the steeper etch slope over 75 $^{\circ}$ could be obtained. These phenomena were interpreted the results the results of a blocking layer such as Si-N or Si-O-N on the oxide mask. Compostional analysis was carried out by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). Moreover, it could be obtained the higher etch rate of Pt film and steeper profile without residues such as p.-Cl and Pt-Pt ant the addition N\ulcorner of 20 % gas in Ar(90)/Cl$_2$(10) Plasma. The Plasma characteristic was extracted from optical emissionspectroscopy (OES).

  • PDF

A Study on the Process Quality Level of K5 Gas Mask (K5 방독면 공정품질 수준에 관한 연구)

  • Kim, Suk Ki;Byun, Kisik;Lee, Sang Yeob;Park, Jae Woo;In, Chi Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.74-80
    • /
    • 2021
  • This study investigated the process quality level of a K5 gas mask, which recently acquired its operational capability, through statistical process analysis for the mass production stages and their lots. The tensile adhesion strength was the only operating requirement in the manufacturing process of the K5 gas mask. For this purpose, the results of tensile adhesion strength between the lens and facial rubber during the initial and second mass production stages were analyzed using conventional statistical and statistical process analysis methods. The conventional statistical results indicated that the second mass production stage was better than the initial mass production stage. In cases of a control chart and process capability of tensile adhesion strength, the process quality level was also improved by following the mass production stages. The improvement was caused by process stabilization and work skill elevation. These results and methods are expected to be conducted and utilized in the third mass production stage. Moreover, quality improvement of K5 gas mask mass production can be achieved using the Lean 6 sigma procedure, MDAIC (Define, Measure, Analyze, Improve, Control).

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

A Study on Deposition of Tungsten Nitride Thin Film for X-ray mask(l) (X-ray 마스크용 $WN_x$ 박막 증착에 관한 연구(l))

  • Jang, Cheol-Min;Choi, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.147-153
    • /
    • 1998
  • Tungsten nitride is very attractive as absorber for X-ray lithographic mask and as a diffusion barrier for interconnecting metallization in Si VLSI technology. Microstructure of tungsten nitride films prepared by RF magnetron sputtering has been investigated as a function of deposition parameter. The crystal structure of sputtered films on silicon nitride membrane depends strongly on the NJAr gas flow ratio(0~18%1, gas pressure(l0~43mTorr). RF power (60~150W), target-substrate distance(4~8cm). Tungsten nitride films deposited at the $N_2/Ar$ gas flow ratio(- 10%). gas pressure(~10mmTorr), RF power(~150W) and target-substrate distance(6cm) are amorphous, but at other conditions are almost rough -surfaced polycrystalline. Amorphous films are very smooth($3.1\AA$ rms) and expected to be excellent absorber for X-ray mask.

  • PDF

Effects of Gas Chemistries on Poly-Si Plasma Etching with I-Line and DUV Resist (I-Line과 DUV Resist에서 Poly-Si 플라즈마 식각시 미치는 개스의 영향)

  • 신기수;김재영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 1998
  • It is necessary to use Arc layer and DUV resist to define 0.25 $\mu \textrm{m}$ line and space for 256 MDRAM devices. Poly-Si etching with Arc layer and different resists has been performed in a TCP-9408 etcher with variation of gas chemistries; $Cl_2/O_2, Cl_2/N_2, Cl_2$/HBr . DUV resist causes more positive etch profile and CD gain compared to I-line resist because the sidewall passivation is more stimulated by increasing polymerization through the loss of resist. When Arc layer is applied, CD hain also increases due to the polymeric mask formed after thching Arc layer. From the point of gas chemistry effects, the etch profile and CD gain is not improved using $Cl_2/O_2$ gas, since polymerization is accelerated in this gas. however, the vertical profile and less CD gain is obtained using $Cl_2$/HBr gas. Furthermore, HBr gas is very effective to suppress the difference of profile and CD variation between dense pattern and isolated pattern by minimizing non-uniformity of side wall passivation with pattern density.

  • PDF

Surface Properties of ACL Thin Films Depending on Process Conditions (공정 조건에 따른 비정질 탄소막 표면 물성분석)

  • Kim, Kwang Pyo;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.44-47
    • /
    • 2019
  • Amorphous carbon layer (ACL) is actively used as an etch mask. Recent advances in patterning ACL requires the next level of durability of hard mask in high aspect ratio etch in near future semiconductor manufacturing, and it is worthwhile to know the surface property of ACL thin film to enhance the property of etch hard mask. In this research, ACL are deposited by 6 inch plasma enhanced chemical vapor deposition system with $C_3H_6$ and $N_2$ gas mixture. Surface properties of deposited ACL are investigated depending on gas flow, pressure, RF power. Fourier transform infrared is used for the analysis of surface chemistry, and X-ray photoemission spectra is used for the structural analysis with the consideration of the contents of $sp^2$ and $sp^3$ through fitting of C1s. Also mechanical properties of deposited ACL are measured in order to evaluate hardness.

Modeling with Thin Film Thickness using Machine Learning

  • Kim, Dong Hwan;Choi, Jeong Eun;Ha, Tae Min;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.48-52
    • /
    • 2019
  • Virtual metrology, which is one of APC techniques, is a method to predict characteristics of manufactured films using machine learning with saving time and resources. As the photoresist is no longer a mask material for use in high aspect ratios as the CD is reduced, hard mask is introduced to solve such problems. Among many types of hard mask materials, amorphous carbon layer(ACL) is widely investigated due to its advantages of high etch selectivity than conventional photoresist, high optical transmittance, easy deposition process, and removability by oxygen plasma. In this study, VM using different machine learning algorithms is applied to predict the thickness of ACL and trained models are evaluated which model shows best prediction performance. ACL specimens are deposited by plasma enhanced chemical vapor deposition(PECVD) with four different process parameters(Pressure, RF power, $C_3H_6$ gas flow, $N_2$ gas flow). Gradient boosting regression(GBR) algorithm, random forest regression(RFR) algorithm, and neural network(NN) are selected for modeling. The model using gradient boosting algorithm shows most proper performance with higher R-squared value. A model for predicting the thickness of the ACL film within the abovementioned conditions has been successfully constructed.