• Title/Summary/Keyword: gas laser

Search Result 719, Processing Time 0.029 seconds

Measurements of Saturation Energy Denity and Small Signal Gain Coefficient Dependent on the Active Gas Pressure in XeCl Laser Amplifier (XeCl 레이저 증폭기의 활성기체 압력에 따른 포화 에너지 밀도와 소신호 이득계수 측정)

  • 김규옥;김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.457-460
    • /
    • 1994
  • Dependence of saturation energy density and small signal gain coefficient on the active gas pressure in XeCl laser amplifier has been investigated. The saturation energy density was increased almost linearly as 1.3, 1.45, 2.0, and $2.3mJ/\textrm{cm}^2$ when the pressure of Xe and He were 30 and 2000 mb, and the pressure of HC] was varied as 34, 52, 73, and 92 mb. Whereas the small signal gain coefficient was measured to be 6.5, 7.5, 7.0, 7.0 %/cm, which shows that the small signal gain did not varies not so much.o much.

  • PDF

Process Automation of Gas Metal Arc Welding Using Artificial Neural Network (인공신경회로망을 이용한 GMA 용접의 공정자동화)

  • 조만호;양상민;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.558-561
    • /
    • 2002
  • A CCD camera with a laser strip was applied to realize the automation of welding Process in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noise such spatter and arc light. The adaptive Hough transformation was used to extract the laser stripe and to obtain specific weld points In this study, a neural network based on the generalized delta rule algorithm was adapted for the process control of GMA, such as welding speed, arc voltage and wire feeding speed.

  • PDF

A Experimental/Numerical Study of Behaviors of Spray Impinging on the Diesel Combustion Chamber Wall (디젤 연소실 벽면에 충돌하는 분무거동에 관한 실험적/수치적 연구)

  • 박정규;원석규;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.86-95
    • /
    • 2000
  • A modified spray impingement model has been developed, which is assessed against experiments for the impinging sprays on the small combustion chamber at various gas pressures. To investigate spray behaviors in the diesel combustion chamber, a transparent constant-volume chamber is made which is similar to the combustion chamber of the real diesel engine. The chamber is pressurized by N2 gas from 0 bar to 20 bar to find the effects of ambient pressures. The behaviors of spray injected into this chamber and dispersed after impingement on the cylinder wall is measured two-dimensionally using laser sheet Mie scattering method. The physical submodels have been properly modified to improve the prediction capability of original KIVA code to describe the spray behaviors after impingement on the curved cylinder wall. In terms of spray dynamics and evolution. numerical results give qualitatively good agreements with experimental data.

  • PDF

Luminescence characteristics of amorphous GaN quantum dots prepared by laser ablation at room temperature

  • Shim, Seung Hwan;Yoon, Jong-Won;Koshizaki, Naoto;Shim, Kwang Bo
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.109-116
    • /
    • 2003
  • Amorphous GaN Quantum dots(a-GaN QDs) with particle diameters less than bohr radius(~11nm) were successfully fabricated at room temperature by a laser ablation of high densified GaN target. Transmission electron microscopy, SAED diffraction pattern and X-ray photoelectron spectroscopy confirmed the presence of a-GaN QDs with particle size of 7.9, 6.9, 4.4nm under the Ar gas pressures of 50, 100 and 200 Pa, respectively. The room temperature PL and absorbance spectra showed a strong band emission centered at 3.9 eV in a-GaN QDs made under the gas pressures of 100 and 200 Pa, which is nearly 0.5eV blueshifted with respect to the bulk crystal band gap.

  • PDF

Numerical Simulation of Two-Phase Flow for Gas-Solid Particles (가스와 입자가 혼합된 2상 유동에 관한 수치해석적 연구)

  • Jung H.;Choi J. W.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The phenomena of two-phase suspension flows appear widely in nature and industrial processes. Hence, it is of great importance to understand the mechanism of the gas-solid two-phase flows. In the present study, the numerical simulation has been approached by utilizing the Eulerian-Lagrangian methodology for describing the characteristics of the fluid and particulate phases in a vertical pipe and a 90°square-sectioned bend. The continuous phase(gas phase) is described by the Eulerian formulation and a κ-ε turbulence model is employed to find mean and turbulent properties of the gas phase. The particle properties(velocity and trajectory) are then described by a Lagrangian approach and computed using the mean velocity and turbulent fluctuating velocity of the gas phase. The predictions are compared with measurements by laser-Doppler velocimeter for the validation. As a result, the calculated results show good agreements.

  • PDF

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

The radio frequency excited slab waveguide CO2 laser (고주파 여기식 슬랩형 도파관 CO2 레이저)

  • 김규식;이영우;우삼용;최종운
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.406-412
    • /
    • 2003
  • We have developed a radio frequency excited slab waveguide $CO_2$ laser. The dimension of active volume is 2${\times}$40${\times}$400 mm. One concave and one convex mirror are used to make the unstable resonator of the positive branch. The radio frequency is 123 MHz and RF input power is varied from 100 to 900 W. The laser gas is set to a pressure of 10∼60 torr and the mixing ratio is $CO_2$:$N_2$:He=1:1:3. The laser output power of 70.7 W was obtained which corresponds to laser power to RF power conversion efficiency of 9.2%.

Spectral Analyses of Plasma Induced by Laser Welding of Aluminum Alloys (알루미늄 합금의 레이저 용접시 유기하는 플라즈마의 스펙트럼 분석)

  • 김종도;최영국;김영식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.292-300
    • /
    • 2001
  • The paper describes spectroscopic characteristics of plasma induces in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg lines, as well as the intense molecular spectra of A10 and Mg0 formed by chemical reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere, Mg0 and AI0 spectra vanished, but AIH spectrum was detected. The hydrogen source was presumably hydrogen dissolved in the base metals, water absorbed on the surface oxide layer, or $H_2$ and $H_2O$ in the shielding gas. The resonant 1ines of Al and Mg were strongly self-absorbed, in particular, self-absorption of the Mg 1ine was predominant. These results show that the laser induced plasma was made of metal1ic vapor with relatively low temperature and high density.

  • PDF

Step Coverage of Laser CVD Deposited $SiO_2$ Films (Laser CVD $SiO_2$ 막의 Step Coverage에 관한 연구)

  • Park, J.W.;Kim, S.W.;Chun, Y.I.;Park, J.S.;Kang, H.B.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.155-157
    • /
    • 1991
  • This paper describe a Laser CVD technology which realizes planarized interlevel dielectrics in sub-micron VLSI's. This technology comprises sub-micron gap filling with $SiO_2$ films between metal lines. Laser CVD process conditions have been investigated to improve step coverage of interlevel dielectrics. An ArF(193nm) Excimer Laser was used to excite and dissociate gas phase $SiH_4\;and\;N_2O$ molecules. The Laser CVD by $N_2O\;and \;SiH_4$. mixture gases has realized conformal deposition above the temperature of $300^{\circ}C$, as a result sub-micron gaps were buried with $SiO_2$ films.

  • PDF

Characteristics of Plasma Emission Signals in Fiber Laser Welding for API Steel (I) - Variation of Signals by Measuring Conditions - (API강재의 화이버레이저 용접시 유기하는 플라즈마의 방사특성 (I) - 측정조건에 따른 광신호의 변화 -)

  • Kim, Jong-Do;Lee, Chang-Je;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.51-57
    • /
    • 2010
  • Fiber laser is a heat source which is introduced recently, and so has a little researched data compare with conventional laser processing. Moreover basic data for welding monitoring are also insufficient. Therefore, in this study, the change of signal with measuring position and angle of plasma emission signals were analysed as a basic experiment for real time monitoring in fiber laser welding. As a result, the signals measured from the side, front and rear had the biggest intensity at $60^{\circ}$, and frequency peak to reflect the behavior of keyhole and swing of plasma by shield gas was detected at $45{\sim}60^{\circ}$. However, both intensity of signal and the result of FFT for monitoring were satisfied at the angle of $45^{\circ}$ from the side.