DOI QR코드

DOI QR Code

The radio frequency excited slab waveguide CO2 laser

고주파 여기식 슬랩형 도파관 CO2 레이저

  • 김규식 (목원대학교 전자공학과) ;
  • 이영우 (목원대학교 전자공학과) ;
  • 우삼용 (한국표준과학연구원, 압력실) ;
  • 최종운 (호남대학교 광전자공학과)
  • Published : 2003.08.01

Abstract

We have developed a radio frequency excited slab waveguide $CO_2$ laser. The dimension of active volume is 2${\times}$40${\times}$400 mm. One concave and one convex mirror are used to make the unstable resonator of the positive branch. The radio frequency is 123 MHz and RF input power is varied from 100 to 900 W. The laser gas is set to a pressure of 10∼60 torr and the mixing ratio is $CO_2$:$N_2$:He=1:1:3. The laser output power of 70.7 W was obtained which corresponds to laser power to RF power conversion efficiency of 9.2%.

고주파 여기 방식의 슬랩 도파관 $CO_2$ 레이저를 제작하고 그 특성을 조사하였다. 레이저 이득을 얻기 위한 고주파 방전구간의 크기는 2${\times}$40${\times}$400mm이고, 레이저 공진기는 볼록거울과 오목거울을 사용하여 positive branch형태의 불안정 공진기를 사용하였다. 고주파 여기 주파수는 123 MHz를 사용하였고, 가스의 혼합 비율은 $CO_2$:$N_2$:He를 각각 1:1:3으로 사용하였다. 공진기의 가스 압력이 40 ton,고주파 입력파워 900 W에서 70.8 W의 출력을 얻었으며, 이때 레이저의 효율은 9.2%이다.

Keywords

References

  1. Appl. Phlys Lett v.32 J.L.Lachambre;J.Macfarlane
  2. SPIE v.3092 High power coaxial CO₂lasers R.Nowack;H.Bochum;T.Hall;K.Wessel https://doi.org/10.1117/12.270189
  3. SPIE v.3186 New resonators for slab-waveguide lasers K.M.Abramski;E.J.Plinski;K.Baczyk https://doi.org/10.1117/12.280487
  4. SPIE v.3092 Working properties of compact RF-excited CO₂slab lasers Antonio,Lapucci;Francesco,Rossetti https://doi.org/10.1117/12.270215
  5. Proceedings of SPIE v.1276 High power CO₂laser waveguide laser of the 1 kW categoty R.Nowack;H.Opower;U.Schafer;K.Wessel https://doi.org/10.1117/12.20528
  6. SPIE v.3092 1 kW slab CO₂laser excited by a self-excited RF generator S.Kobayashi;T.Murata https://doi.org/10.1117/12.270191
  7. SPIE v.3092 Measurement of the impedance of RF excited CO₂lasers and discharge chambers C.Lucking;K.Fakler;U.Berkermann;J.Mentel;G.Schiffner
  8. Appl. Phys. Lett v.54 Power scaling of large area transverse radio frequency discharge CO₂lasers K.M.Abramski;A.D.Colley;H.J.Baker https://doi.org/10.1063/1.101250
  9. IEEE J. Quantum Electronics v.32 High-power two-dimensional waveguide CO₂laser arrays Krzysztof,M.Abramski;Alan,D.Colley https://doi.org/10.1109/3.481882
  10. Appl. Phys. Lett v.54 A CO₂large area laser using a hybrid waveguide unstable resonator P.E.Jackson;H.J.Baker;D.R.Hall https://doi.org/10.1063/1.101203
  11. SPIE v.3186 New resonator for slab-waveguide lasers K.M.Abramski;E.F.Plinski;Witkowski;P.A.Duda;R.Nowicki https://doi.org/10.1117/12.280487
  12. Opics communications v.111 Beam properties of an RF discharge annular CO₂laser A.Lapucci;F.Rossetti;P.Burlamacchi https://doi.org/10.1016/0030-4018(94)90468-5
  13. IEEE J. Quantum Electronics v.31 On the longitudinal voltage distribution in radio-frequency discharged CO₂lasers with large area electrodes Antonio,Lapucci;Francesco,Rossetti;Marco,Ciofini https://doi.org/10.1109/3.400408
  14. J. Appl. Phys v.54 Methode for reducing the longitudinal voltage variation in transverse radio frequency discharge waveguide lasers Y.­M.Kim;C.E.Youn;J.W.Ra
  15. Appl. Phys v.33 Algorithm of RF-excited slab-waveguide laser design E.F.Plinski;J.S.Witkowski;K.M.Abramski;J.Phys.D
  16. J. Phys. D v.26 The three temperaure model for the axial flow CO₂laser S.Sazhin;P.Wild;C.Leys;D.Thebaert;E.Sazhina https://doi.org/10.1088/0022-3727/26/11/007
  17. J. Phys. D v.20 Influence of turbulence and convection on the output of a high-power CO₂laser with a fast axial flow S.Muller;J.Uhlenbusch https://doi.org/10.1088/0022-3727/20/6/004
  18. Jpn. J. Appl. Phys v.54 Longitudinal voltage distribution in transverse rf discharge waveguide lasers D.He;D.R.Hall https://doi.org/10.1143/JJAP.38.6340
  19. App. Phys. Lett v.73 no.18 Beam quality enhancement for a radio-frequency excited annular CO₂laser A.Lapucci;M.Ciofini;S.Mascalchi https://doi.org/10.1016/0030-4018(78)90412-1
  20. Jpn. J. Appl. Phys v.38 Theoretical analysis of the radio frequency exited slab CO₂laser Naoya,Matsuoka;Shigeru;Yamaguchi https://doi.org/10.1143/JJAP.38.6340
  21. Optics.communication v.27 Effects of foreign gas on the small signal gain of a thermally pumped CO₂lawer H.Hara;S.Nakao https://doi.org/10.1016/0030-4018(78)90412-1