• 제목/요약/키워드: gas generation rate

검색결과 355건 처리시간 0.026초

온도와 반응 시간에 따른 세라믹 튜브 내 메탄 열분해 반응의 메탄 전환율과 선택도 분석 (Analysis of Methane Conversion Rate and Selectivity of Methane Pyrolysis Reaction in Ceramic Tube According to Temperature and Reaction Time)

  • 이동근;김영상;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2022
  • Interest in hydrogen productions that do not emit carbon dioxide and can produce hydrogen at a low price is increasing. Reforming and electrolysis are widely used, but they have limitations, such as carbon dioxide problems and costs. The methane can be decomposed as hydrogen and solid carbon without carbon dioxide emission at high temperatures. In this research, the methane pyrolysis experiment was conducted at 1,200℃ and 1,400℃ in a ceramic tube. The composition of the produced gas was measured by gas chromatography before carbon blocked the tube. The methane conversion rate and hydrogen selectivity were calculated based on the results. The hydrogen selectivity was derived as 60% and 55% at the highest point at 1,200℃ and 1,400℃, respectively. The produced solid carbon was expected to be carbon black and was analyzed using scanning electron microscope.

개방형 수식모델링 툴을 이용한 IGCC 플랜트 공정모사 (Process Modeling of IGCC Power Plant using Open-Equation Modeling Framework)

  • 김시문;주용진;김미영;이중원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • IGCC(Integrated Coal Gasification and Combined Cycle) plants can be among the most advanced and environmental systems for electric energy generation from various feed stocks and is becoming more and more popular in new power generation fields. In this work, the performance of IGCC plants employing Shell gasification technology and a GE 7FB gas turbine engine was simulated using IPSEpro open-equation modeling environment for different operating conditions. Performance analyses and comparisons of all operating cases were performed based on the design cases. Discussions were focused on gas composition, syngas production rate and overall performance. The validation of key steady-state performance values calculated from the process models were compared with values from the provided heat and material balances for Shell coal gasification technology. The key values included in the validation included the inlet coal flow rate; the mass flow rate, heating value, and composition of major gas species (CO, H2, CH4, H2O, CO2, H2S, N2, Ar) for the syngas exiting the gasifier island; and the HP and MP steam flows exiting the gasifier island.

  • PDF

입력가스의 유량변화와 첨가가스에 따른 고농도 오존발생특성 (High Concentration Ozone Generation Characteristics by Variation of Additional Gases and Flow Rates of Inlet Gas)

  • 박승록;이대희
    • 조명전기설비학회논문지
    • /
    • 제16권6호
    • /
    • pp.95-101
    • /
    • 2002
  • 고농도의 오존발생에 영향을 주는 많은 변수들이 존재한다. 이러한 변수들은 오존발생장치 설계시 매우 중요한 요소가 되고 설계전에 반드시 고려되어야 할 것들이다. 오존발생장치 설계 후에도 고농도 오존발생에 크게 영향을 주는 주변변수들이 있다. 본 연구에서는 오존발생에 영향을 주는 많은 주변변수들중에서 입력산소가스의 유량과 여기에 첨가되는 첨가가스가 고농도의 오존발생에 미치는 영향을 조사하였다. 결과적으로, 입력산소가스의 유량을0.75[LPM]~2.00[LPM]으로 변화시키면서 오존농도를 측정한 결과 1.25[LPM]에서 71145[ppm]의 최대오존발생량을 보여주었다. 입력산소가스에 첨가되는 질소가스의 유량을 0.0[vol%]~6.4[vol%]으로 변화시켜가면서 발생되는 오존농도를 측정한 결과 첨가되는 질소가스량이 0.8[vol%]인 경우 최대 73135[ppm]의 오존을 얻을 수 있었다. 이것은 순수산소만을 입력가스로 사용했을 때보다 최대오존발생량이 3[%]가량 증가한 결과이다. 입력산소가스에 첨가되는 아르곤가스의 유량을 0.0[vol%]~6.4[vol%]으로 변화시켜가면서 발생되는 오존농도를 측정한 결과 첨가되는 아르곤가스량이 0.8[vol%]인 경우 최대 67288[ppm]의 오존을 얻을 수 있었다.

배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석 (Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization)

  • 김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석 (Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization)

  • 김동섭
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

발전용 대형엔진용 천연가스 분사밸브 동특성 연구 (I) (Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty Power Generation Engine - Part I)

  • 최영;김용래;이석환;김창기
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.15-21
    • /
    • 2015
  • 천연가스 연료는 매장량과 경제성 측면에서 미래 가치가 매우 높기 때문에 여러 가지 이용 기술 개발이 활발하게 이루어지고 있으며 내연기관을 이용한 발전 분야에서도 그 중요성이 점점 증가하고 있는 실정이다. 천연가스 연료를 이용하는 MW급 발전용 대형 왕복엔진의 경우 연료공급시스템의 고도화 개발이 필요한데 그 중에서도 천연가스 분사기의 개발은 실질적인 천연가스 연료 이용을 위한 핵심이다. 본 연구에서는 천연가스 분사기를 상부에 위치한 솔레노이드의 전자기력에 의해 구동되고 하부의 밸브 바디부 전기자와 이동판이 상하로 움직이는 구조의 분사밸브 형태로 고안 및 설계하였으며 이 시작품의 동특성을 엔진 흡기 모사 조건에서 실험하였다. 전기자의 변위와 지름을 변경해 가면서 실험을 수행하였는데, 그 결과 유량의 선형성이 잘 보장되고 1bar 의 차압에서 2ms 이내의 응답성으로 분사밸브가 열리는 결과를 얻었다. 가스 유량 또한 100Liter/min(@2Hz) 이상으로 충분하기 때문에 본 연구에서 고안한 천연가스 분사밸브는 요구되는 동특성 성능실험을 만족하였기 때문에 MW급 발전용 천연가스 엔진 연료공급시스템에 적합할 것으로 판단된다.

SF6 가스를 충전한 변압기의 자연순환 냉각시스템의 성능시뮬레이션 (Performance Simulation of Natural Circulating Cooling System of SF6 Gas Charged Transformer)

  • 최영돈;허창수;김진봉
    • 설비공학논문집
    • /
    • 제6권1호
    • /
    • pp.54-65
    • /
    • 1994
  • Performance of naturally circulating cooling system of $SF_6$ gas charged transformer was simulated and the variations of gas flow rate, maximum coil temperature, gas temperature and cooling air temperature were investigated with respect to the height of radiator, interplates distance and heat generation rate at core. The results show that the height of radiator most significantly affects the performance of natural circulating cooling system of transformer.

  • PDF

배기가스를 정화하는 흡음재의 특성에 관한 연구 (A Study on Properties of Sound Absorbing Materials with Characteristics of Exhaust-gas Purge)

  • 이승한;황보광수;장석수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.935-940
    • /
    • 2001
  • This study search for absorbing sound and exhaust-gas which aims to manufacture continuous void by using clay and foam, the surface of materials is covered with $TiO_{2}$ powder as heat treatment. According to the results of the experiment, the increase of thickness of manufactured sound absorbing materials caused the increase of absorption rate in the range of low and middle sound and thus it can be an important factor of improving absorption rate. Sound absorbing materials could satisfy 70% of the average of sound absorption ratio in 7cm thickness. Also, the manufactured sound absorbing materials is covered with $TiO_{2}$ showed an excellency in the clarification of exhaust-gas under ultraviolet rays treatment when 70% of removal rate and about 10% of generation rate of $NO_{2}$ is settled by the flow of 2 $\ell$/min NO gas. Especially, manufactured sound absorbing materials could improve compressive strength of continuos porous concrete. in the case of 7% bubble addition, when the substitution rate of coagulator was 30% and 20%, compressive strength was 45kgf/$cm^{2}$ and 65kgf/$cm^{2}$ respectively. As the substitution rate of coagulator reducing, compressive strength increased after preforming burnt clay.

  • PDF

전압인가 방식에 따른 평판형 오존발생기의 특성 (The Characteristics of plate type ozonizer according to voltage application method)

  • 이창호;김종현;윤병한;김기채;이광식
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.203-207
    • /
    • 2007
  • Recently, ozone is utilized in various fields and its needs are expanding. In this paper, plate type ozonizer have been fabricated to investigate discharge parameter(input power, flow rate of supplied gas, electrode form, etc.) effect to discharge. And the conditions of discharge parameter have been investigated for optimum ozone generation. Ozone concentration is continuously increased with increasing input power for same discharge space, and ozone yield is also increased until maximum point after that it is saturated. Ozone concentration is inversely proportional to flow rate of supplied gas but ozone generation and ozone yield characteristics are improved.

  • PDF

충격파관을 이용한 DISK형 MHD발전기의 엔탈피추출율과 단열효율에 관한 연구 (A Study on Enthalpy Extraction Rate and Isentropic Efficiency of the Disk Type Generator using a Shock Tube)

  • 배철오;김윤식;박영산;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1981-1983
    • /
    • 1998
  • The principle of the MHD generation is based on Faraday's law of induction that a eletromotive force(u ${\times}$ B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In MHD power generation system, enthalpy of the working gas is converted to electric power directly through expansion in generator channel. It means that electric power can be generated without moving mechanical linkage such as turbine blades. There are two types in the MHD generator; linear type Faraday and disk type hall generator. Disk type hall generator is the main target of this paper. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF