• Title/Summary/Keyword: gas distributor

Search Result 29, Processing Time 0.025 seconds

Enhancing Flow Uniformity of Gas Separator for Solid Oxide Fuel Cells by Optimizing Dimple Patterns (딤플 패턴 최적화를 통한 고체산화물 연료전지 분리판의 흐름 균일도 향상)

  • QUACH, THAI-QUYEN;LEE, DONG KEUN;AHN, KOOK YOUNG;KIM, YOUNG SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2021
  • This study presents a novel way to enhance uniformity of the gas flow inside the solid oxide fuel cell (SOFC), which is critically important to fuel cell performance, by using dimples. A pattern of dimple, which works as a flow distributor/collector, is designed at the inlet and outlet section of a straight channel gas separator. Size of the dimples and the gap between them were changed to optimize the flow uniformity, and any change in size or gap is considered as one design. The results show that some dimple patterns significantly enhance the uniformity compared to baseline, about 4%, while the others slightly reduce it, about 1%. Besides, the dimple pattern also affects to the pressure drop in the flow channel, however the pressure drop in all cases are negligible (less than 26.4 Pa).

A study on the fluidization of centrifugal fluidized bed for reduction of exhaust gas from diesel powered vehicle (경유차 배기가스 저감용 원심유동층 촉매반응장치의 유동특성에 관한 연구)

  • Rhee, Kwan-Seok;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.209-213
    • /
    • 2016
  • The characteristics of fluidization in a centrifugal fluidized bed with a 184 mm inner diameter, 50 mm width of the gas distributor was observed by photographs and experimental works using Cu-ZSM-5 zeolite catalysts with a mean diameter of $26{\mu}m$ and $32{\mu}m$ as bed materials at a rotor at 400rpm and 600rpm. Under these experimental ranges, the experimental results clearly showed the effects of the number of rotation of the rotor on the behavior of bubbles in the centrifugal fluidized bed. As the number of rotations of the rotor increased, the gas velocity at which bubbles begin to be formed also increased but the diameter of the bubbles decreased. In addition, the size of the bubbles in the centrifugal fluidized bed were relatively smaller than those in the conventional bubbling fluidized bed.

Effect of Lower Bed Height on Collapse Velocity in the Two-Stage Bubbling Fluidized-Bed with a Standpipe for Solid Transport (고체 수송관이 있는 2 단 기포 유동층에서 붕괴 속도에 대한 하단 층 높이의 영향)

  • Khurram, Muhammad Shahzad;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.864-870
    • /
    • 2018
  • The effect of lower bed height on the collapse velocity was investigated for a two-stage bubbling fluidizedbed (0.1 m in diameter, 1.2 m high) connected with a standpipe (0.025 m in diameter) for solid transport. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3625kg/m^3$ in apparent density) and fine (< $147{\mu}m$ in diameter and $4079kg/m^3$ in apparent density) particles as solid particles. Mixing ratio of fine particles, height of the lower bed and the distributor of the upper bed were considered as experimental variables. The collapse velocity increased with static height of the lower bed. However, the effect decreased as the mixing ratio of fine particles increased. The effect seemed to be attributed to the increase in height of the dense layer of coarse particles that prevented the gas from flowing into the standpipe, not in pressure drop for the standpipe, as the bed height increased. The collapse velocity decreased a little as the pressure drop of the distributor of the upper bed increased. An improved correlation was proposed for predicting the collapse velocity.

Hydrodynamics and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle (단일노즐을 사용한 내부순환 공기리프트 반응기에서 수력학과 액체의 흐름특성)

  • Kim, Jong-Chul;Jang, Sea-Il;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.816-821
    • /
    • 1997
  • The hydrodynamics and the liquid flow characteristics were investigated in an internal circulation airlift reactor with a single nozzle as a gas distributor. In an air-water system, the gas holdup in the individual flow zone and the impulse-response curve of tracer were measured at various gas velocities and reactor heights. Experimental results showed that for the higher gas velocity(>about 8 cm/s), the flow behavior of bubbles in the riser was turbulent flow due to strong bubble coalescences and the axial height of dispersion zone of large bubbles having uniform sizes in the downcomer was decreased with increasing gas velocity. And mean gas holdups in the individual flow zone and the reactor were increased with increasing gas velocities and were decreased with increasing heights of the top section of the reactor and it was decreased with increasing the height of the top section and gas velocity. Flow characteristics of liquid in the riser and the downcomer was tend to access to plug flow and the overall flow behavior of liquid was mainly varied with the size of the top section which it was assumed to be perfect mixing zone. In these conditions, liquid circulation velocities were increased with increasing gas velocities and they were higher than those by using other gas distributors.

  • PDF

Axial and Radial Distributions of Bubble Holdup in a Slurry Bubble Column with Pilot Plant Scale (파일럿규모 슬러리 기포탑에서 기포체류량의 축방향, 반경방향 분포)

  • Lim, Dae-Ho;Jang, Ji-Hwa;Kang, Yong;Jun, Ki-Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.200-205
    • /
    • 2011
  • Axial and radial distributions of bubble holdup were investigated in a slurry bubble column with pilot plant scale(D=1.0 m). Effects of gas velocity, surface tension of continuous liquid medium and solid fraction in the slurry phase on the axial and radial distributions of bubble holdup were examined. The bubble holdup decreased with increasing radial dimensionless distance from the center of the column, while it increased with increasing dimensionless distance in the axial direction from the distributor, in all the cases studied. The radial non-uniformity of bubble holdup increased with increasing gas velocity but decreasing surface tension of liquid medium, while it was not dependent upon the solid fraction in the slurry phase. The axial non-uniformity of bubble holdup increased with increasing gas velocity, but it does not change considerably with variations of liquid surface tension or solid fraction in the slurry phase . The axial and radial distributions of bubble holdup were well correlated in terms of operating variables within this experimental conditions.

Gas and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle -Effects of Flow Zone Sizes- (단일노즐을 사용한 내부순환 공기리프트 반응기에서 기체 및 액체의 유동특성 - 유동지역의 크기영향 -)

  • Jang, Sea-Il;Kim, Jong-Chul;Jang, Young-Joon;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.901-906
    • /
    • 1998
  • Gas and liquid flow characteristics were investigated in an internal circulation airlift reactor using a single nozzle for a gas distributor. In three reactors with different diameters of the downcomer and heights of the riser, the gas holdup in the individual flow zone and the impulseresponse curve of tracer for an air-water system were measured for various gas velocities and reactor heights. Experimental results showed that the flow behavior of bubbles in the riser was the slug flow due to strong coalescences of bubbles and that the bubble flow pattern in the downcomer was the transition bubble flow for the smaller diameter of the downcomer, however, it was the homogeneous bubble flow for the larger one. And mean gas holdups in the individual flow zone and the reactor were greatly increased with decreasing the diameter of the downcomer for the equal ratio of height of the top section to that of the riser. Also, the mixing time was much effected by the height of the top section of reactor and for the equal ratio of height of top section to that of the riser, it was increased with increasing the diameter of the downcomer and the height of the riser. Flow characteristics of liquid were mainly varied with the bubble flow pattern in the downcomer and the size of the top section of reactor. And circulation velocities of liquid in the riser were increased with increasing gas velocities and the size of the top section of reactor, and for the equal ratio of height of top section to that of the riser, they were increased with increasing the diameter of the downcomer and the height of the riser.

  • PDF

Characteristics of Bubble Flow Behavior in a Gas-liquid Countercurrent Bubble Column Bioreactor (기-액 향류 흐름 기포탑 생물 반응기에서 기포 흐름 거동 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Lee, Chan-Gi;Jung, Sung-Hyun;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.272-277
    • /
    • 2005
  • Characteristics of bubbling behavior and bubble properties were investigated in a gas-liquid countercurrent bubble column of in diameter 0.152 m and 3.5 m in height, respectively. Effects of gas and liquid velocities and bubble distribution mode(even, wall-side, central or asymmetric distribution) on the bubble properties such as chord length, frequency, rising velocity and holdup in the reactor were measured and examined by means of dual resistivity probe method. The bubble size, frequency and holdup increased with increasing gas($U_G$) or liquid velocity($U_L$). The rising velocity of bubbles increased with increasing $U_G$, whereas decreased with increasing $U_L$. The uniformity of bubble size distribution and bubble holdup decreased when the distribution mode of bubbles at the gas distributor was changed from even to wall-side, central or asymmetric. The central distribution of bubbles was better than asymmetric mode but worse than wall-side distribution, in considering the bubble holdup and uniformity of distribution.

An Experimental Study on Multiple ICP & Helicon Source for Oxidation in Semiconductor Process

  • Lee, Jin-Won;Na, Byoung-Keun;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.271-271
    • /
    • 2012
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance, Inductively Coupled Plasma, Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. In this presentation, we will propose the new concept of the multiple source, which consists of a parallel connection of ICP sources and helicon plasma sources. For plasma uniformity, equivalent power (especially, equivalent current in ICP & Helicon) should distribute on each source. We design power feeding line as coaxial transmission line with same length of ground line in each source for equivalent power distribution. And we confirm the equivalent power distribution with simulation and experimental result. Based on basic study, we develop the plasma source for oxidation in semiconductor process. we will discuss the relationship between the processing parameters (With or WithOut magnet, operating pressure, input power ). In ICP, plasma density uniformity is uniform. In ICP with magnet (or Helicon) plasma density is not uniform. As a result, new design (magnet arrangement and gas distributor and etc..) are needed for uniform plasma density in ICP with magnet and Helicon.

  • PDF

A Study on the Simultaneous Ignition and Flow Distribution of Hybrid Rocket Clustering Model (하이브리드 로켓 클러스터링 모델의 동시 점화 및 유량 분배 연구)

  • Park, Sunjung;Moon, Keunhwan;Lee, Changwoo;Lee, Yeongseok;Kang, Soyoung;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.781-786
    • /
    • 2017
  • This study aims to acquire a basic clustering technology of hybrid rocket motor for lunar lander, including the oxidizer flow distribution characteristic and the simultaneous ignition characteristic. The experimental setups were established to conduct a series of ground firing test of a clustered motor. The gaseous oxygen (GOX) and the HDPE (High Density PolyEthylene) were used as the oxidizer and the solid fuel, respectively. Experimental results which are the simultaneous pyrotechnic ignition characteristic, the oxidizer distribution characteristic and the pressure traces of each combustion chamber imply that the hybrid rocket clustered motor works successfully.

  • PDF

Characteristics of Methanol-O2 Catalytic Burner according to Oxidant Supply Method (산화제 공급 방법에 따른 메탄올-산소 촉매연소기 특성)

  • JI, HYUNJIN;LEE, JUNGHUN;CHOI, EUNYEONG;YANG, SUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2020
  • Recently, a fuel reforming plant for supplying high purity hydrogen has been studied to increase the operation time of underwater weapon systems. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant needs a methanol-O2 catalytic burner to obtain heat and supply heat to the reformer. In this study, two types of designs of a catalytic burner are presented and the results are analyzed through the experiments. The design of the catalytic burner is divided into that the O2 supply direction is perpendicular to the methanol flow direction (Design 1) and the same as the methanol flow direction (Design 2). In case of Design 1, backfire and flame combustion occurred in the mixing space in front of the catalyst, and in the absence of the mixing space, combustion reaction occurred only in a part of the catalyst. For above reasons, Design 1 could not increase the exhaust gas temperature to 750℃. In Design 2, no flashback and flame combustion were observed, the exhaust gas could be maintained up to 750℃. However, the O2 distributor was exposed to high temperatures, resulting in thermal damage.