Browse > Article
http://dx.doi.org/10.9713/kcer.2011.49.2.200

Axial and Radial Distributions of Bubble Holdup in a Slurry Bubble Column with Pilot Plant Scale  

Lim, Dae-Ho (School of Chemical Engineering, Chungnam National University)
Jang, Ji-Hwa (School of Chemical Engineering, Chungnam National University)
Kang, Yong (School of Chemical Engineering, Chungnam National University)
Jun, Ki-Won (Green Chemical Technology Division, Korea Research Institute of Chemical Technology)
Publication Information
Korean Chemical Engineering Research / v.49, no.2, 2011 , pp. 200-205 More about this Journal
Abstract
Axial and radial distributions of bubble holdup were investigated in a slurry bubble column with pilot plant scale(D=1.0 m). Effects of gas velocity, surface tension of continuous liquid medium and solid fraction in the slurry phase on the axial and radial distributions of bubble holdup were examined. The bubble holdup decreased with increasing radial dimensionless distance from the center of the column, while it increased with increasing dimensionless distance in the axial direction from the distributor, in all the cases studied. The radial non-uniformity of bubble holdup increased with increasing gas velocity but decreasing surface tension of liquid medium, while it was not dependent upon the solid fraction in the slurry phase. The axial non-uniformity of bubble holdup increased with increasing gas velocity, but it does not change considerably with variations of liquid surface tension or solid fraction in the slurry phase . The axial and radial distributions of bubble holdup were well correlated in terms of operating variables within this experimental conditions.
Keywords
Axial and Radial Distribution; Bubble Holdup; Slurry Bubble Column; Surface Tension; Pilot Plant Scale;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Deckwer, W. D., Bubble column Reactors, John Wiley and Sons Ltd., (1992).
2 Nigam, K. D. P. and Schumpe, A., "Three-phase Spagered Reactors," Gorden and Breach(1996).
3 Mill, P. L. and Chandhari, R. V., "Reaction Engineering of Emerging Oxidation Process," Catal. Today, 48, 17-29(1999).   DOI   ScienceOn
4 Pinta, A. and Levec, J., "Catalytic Liquid-Phase Oxidation of Refractory Organics in Waste Water," Chem. Eng. Sci., 47, 2395-2400(1992).   DOI   ScienceOn
5 Seo, M. J., Lim, D. H., Shin I. S., Son, S. M. and Kang, Y., "Mass Transfer Characteristics in Pressurized Three-phase Slurry bubble columns with Variation of column Diameter," Korean Chem. Eng, Res. (HWAHAK KONGHAK), 47, 459-464(2009).
6 Jang, J. H., Seo, M. J., Lim, D. H., Kang, Y. and Lee, H. T., "Heat Transfer Model and Energy Dissipation Rate in Bubble columns with Continuous Operation," Korean Chem. Eng, Res. (HWAHAK KONGHAK), 47, 587-592 (2009).
7 Seo, M. J., Lim, D. H., Jin, H. R., Kang, Y., Jung, H. and Lee, H. T., "Analysis of Hydrodynamics Similarity of Pressurized Threephase Slurry bubble column for its Design and Scale-up," Korean Chem. Eng, Res. (HWAHAK KONGHAK), 47, 720-726(2009).
8 Kang, Y., Lee, K. I., Shin, I. S., Son, S. M., Kim, S. D. and Jung, H., "Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-phase Inverse Fluidized Beds," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46, 451-464(2008).
9 Kim, S. D. and Kang, Y., "Hydrodynamics, Heat and Mass Transfer in Inverse and Circulating Three-phase Fluidized-Bed Reactors for Waste water Treatment," Stud. Surf. Sci. Catal., 159, 103-108 (2006).   DOI
10 Son, S. M., Song, P. S., Lee, C. G., Kang, S. H., Kang, Y. and Kusakabe, K., "Bubble Behavior in Gas-liquid Counter Current Bubble Column Bioreactor," J. Chem. Eng. Japan, 37, 990-998 (2004).   DOI   ScienceOn
11 Son, S. M., Yun, J. H., Kim, H. T., Song, P. S., Kang, Y. and Kim, S. D., "Axial Variation and Distribution of Bubble Properties in Gas/liquid Countercurrent Fluidized Beds," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 42, 235-240(2004).
12 Son, S. M., Kang, S. H., Kim, U. Y., Kang, Y. and Kim, S. D., "Bubble Properties in Three-phase Inverse Fluidized Beds with Viscous Liquid Medium," Chem. Eng. Processing, 46, 736-741 (2007).   DOI   ScienceOn
13 Lee, K. I., Son, S. M., Kim, U. Y., Kang, Y., Kang, S. H. and Kim, S. D., "Particle Dispersion in Viscous Three-phase Inverse Fluidized Beds," Chem. Eng. Sci., 62, 7060-7067(2007).   DOI   ScienceOn
14 Chen, J., Gupta, P., Degleesan, S., Al-Dahhan, M. H., Dudukovic, M. P. and Toseland, B. A., "Gas holdup Distibutions in Large- Diameter Bubble Columns Measured by Computed Tomography," Flow Measurement and Instrumentation, 9, 91-101(1998).   DOI   ScienceOn
15 Ueyama, K., Morooka, S., Kolde, K., Kaji, H. and Mlyauchi, T., "Behavior of Gas Bubbles in Bubble Columns," Ind. Eng. Process Des. Dev, 19, 592-599(1980).
16 Jin, H., Yang, S., Guo, Z., Guangxiang, H. and Tong, Z., "The Axial Distribution of Holdups in an Industrial-Scale Bubble column with Evaluated Pressure Using -ray Attenuation Approach," Chem. Eng. J., 115, 45-50(2005).   DOI   ScienceOn
17 Krishna, R. and Sie, S. T., "Design and Scale-up of the Fischer- Tropsh Bubble Column Slurry Reactor," Fuel Process. Technol., 64, 73-105(2000).   DOI   ScienceOn
18 Neathery, J. K. and Davis, B. H., "FT Catalyst Performance: Comparison Between Pilot-scale SBCR and CSTR Systems," Catal. Today, 84, 3-8(2003).   DOI   ScienceOn