• Title/Summary/Keyword: gas chromatography-mass spectrometer

Search Result 106, Processing Time 0.037 seconds

A comparative analysis of volatile organic compound levels in field samples between different gas chromatographic approaches (분석기법의 차이에 따른 현장시료의 VOC 분석결과 비교연구: 분석오차의 발생 양상과 원인)

  • Ahn, Ji-Won;Pandey, Sudhir Kumar;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.465-476
    • /
    • 2010
  • In this study, a number of volatile organic compounds (VOCs) including benzene, toluene, p-xylene, styrene, and methyl ethyl ketone were analyzed from samples collected in ambient air and under the field conditions. These samples were analyzed independently by two different set-ups for VOC analyses, i.e., between [1] gas chromatography/flame ionization detector with tube sampling - (F-T system) and [2] gas chromatography/mass spectrometer with bag sampling (M-B system). The analytical results derived by both systems showed fairly similar patterns in relative sense but with moderately large differences in absolute sense. The results of M-B system were high relative to F-T system with the F-T/M-B ratio below 1. If the relative biases of the two measurement techniques are derived in terms of percent difference (PD) in concentration values, the results were generally above 35% on average. A student t-test was applied to investigate the statistical significance of those differences between the systems. The results of both analytical systems were different at 95% confidence level for toluene, p-xylene, styrene, and methyl ethyl ketone (P < 0.043). However, F-T and M-B systems showed strong correlations for toluene and p-xylene. The observed bias is explained in large part by such factors as the differences in standard phases used for each system and the chemical loss inside the bag sampler.

Residues of Dioxins in Soil Cultured Ginseng of North Gyeongbuk (경북북부 인삼 재배 토양 중 Dioxins의 잔류)

  • Kim, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.451-459
    • /
    • 2012
  • PCDDs(Polychlorinated dibenzo-$p$-dioxins) and PCDFs(polychlorinated dibenzofurans) are measured in soil of Yeungju and Sangju on North Gyeongbuk to investigate the risk assessment of dioxins. Dioxins are analyzed by HRGC/HRMS(high resolution gas chromatography - high resolution mass spectrometer). 2,3,7,8-T4CDD and 1,2,3,7,8-Pe5CDD in soil on Yeungju and Sangju are not detected. Also, 2,3,7,8-T4CDF is not detected in soil on Yeungju and Sangju. PCDDs and PCDFs in Yeungju soil are 1.957 pg/g and 0.294 pg/g, respectively. Total of dioxins in Yeungju soil are 2.251 pg/g. PCDDs and PCDFs in Sangju soil are 1.220 pg/g and 0.420 pg/g, respectively. Total of dioxins in Sangju soil are 1.640 pg/g. PCDDs and PCDFs in Yeungju soil are 0.0049 pg WHO-TEQ/g and 0.0123 pg WHO-TEQ/g, respectively. Total of dioxins with PCDDs and PCDFs in Yeungju soil are 0.0172 pg WHO-TEQ/g. PCDDs and PCDFs in Sangju soil are 0.0065 pg WHO-TEQ/g and 0.0213 pg WHO-TEQ/g, respectively. Total of dioxins with PCDDs and PCDFs in Sangju soil are 0.0278 pg WHO-TEQ/g. Amount for pg/g concentration unit of PCDDs is higher than amount of PCDFs in soil. But, WHO-TEQ of PCDFs is higher than WHO-TEQ of PCDDs in soil.

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

First GC-IRMS in Korea and Its Application Fields (국내 최초로 도입된 GC-IRMS와 응용분야 소개)

  • Shin, Woo-Jin;Lee, Kwang-Sik;Ko, Kyung-Seok
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.699-703
    • /
    • 2007
  • Compound-specific isotope analysis (CSIA) by isotope ratio mass spectrometer (IRMS) interfaced with gas chromatography (GC) is a state of the art analytical technique for stable isotopes in earth sciences, environmental sciences and forensics. Since early 1990s, GC-IRMS has been widely used to investigate the authenticity of food in forensic science and to trace the sources of organic contaminants in environmental science. In Korea, a GC-IRMS was firstly installed at the Korea Basic Science Institute (KBSI) in early 2005. In this study, we introduce the GC-IRMS of the KBSI shortly to stimulate various isotope-related researches of Korea, and report preliminary CSIA results for BTEX of different manufacturers.

Distribution of Certain Chlorobenzenes in Seawater from Youngil Bay, Korea

  • Moon, Hyo-Bang;Park, Hee-Gu;Kim, Sang-Soo;Jeong, Seung-Ryul;Lee, Pil-Yong
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.107-111
    • /
    • 2001
  • Surface seawater was sampled from 20 stations in Youngil Bay, Korea in November 2000. The samples were analyzed for eight chlorobenzenes(CBs) out of a total of 12 in the congener series using a gas chromatography coupled to a mass spectrometer detector(GC/MSD). The total CB levels varied from 1.3 to 6.1 ng/L with a mean of 4.0 ng/L. Trichlorobenzene groups (sum of 1,3,5-, 1,2,4-, and 1,2,3-trichlorobenzene) were the predominant class among the four congener groups, while tetrachlorobenzenes(sum of 1,2,3,5-, 1,2,4,5-, and 1,2,3,4- tetrachlorobenzene) and pentachlorobenzene showed a low presence. The total CB levels exhibited similar patterns for all the stations. A significant positive correlation was observed between the individual CB compounds in the particulate samples, while the dissolved samples revealed a strong correlation between the heavier molecular weight CBs.

  • PDF

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites for Train Body (철도차량용 폐 복합소재에서의 탄소섬유 회수)

  • Lee, Suk-Ho;Lee, Cheul-Kyu;Kim, Yong-Ki;Kim, Jung-Seok;Ju, Chang-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.406-415
    • /
    • 2008
  • Recently, the amount of thermosetting plastic wastes have increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy composites, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that recovers carbon fibers from carbon fiber reinforced epoxy composites for train body was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

  • PDF

Effects of Temperature on the Coking Characteristics of Kerosene (케로신 연료의 침탄 특성에 대한 온도의 영향)

  • Kim, Min Cheol;Kim, Yeong Jin;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.46-52
    • /
    • 2019
  • This research was conducted to analyze the effects of temperature on coking characteristics of kerosene. The kerosene was heated to 600 K, 700 K, and 800 K, and the cooled samples were collected. The used copper tubes were replaced according to the temperature conditions. The liquid and copper specimens were analyzed by gas chromatography-mass spectrometry and scanning electron microscopy equipped with an energy dispersive x-ray spectrometer, respectively. The results of the analysis confirmed that a carbon deposit was formed from the coking of fuel on the inner surface of the copper specimen at a relatively high temperature (800 K) of the copper tube.

Anti-bacterial properties and safety evaluation of disinfectant using Dendropanax morbifera (Hwangchil) extract for passenger cabin in the subway (지하철 객실 적용을 위한 황칠 추출물 소독제의 항균특성 및 안전성 평가)

  • Bui, Vu Khac Hoang;Park, Jae-Seok;Lee, Young-Chul
    • Particle and aerosol research
    • /
    • v.18 no.2
    • /
    • pp.37-50
    • /
    • 2022
  • Due to the syndrome coronavirus 2 (SARS-CoV-2) pandemic, the subway passenger cabin should be continuously sterilized. However, a disinfectant such as chlorine is toxic and can lead to different issues to human health. In this paper, we introduced a novel disinfectant based on natural product (Dendropanax morbifera extract). Via ultra-high performance liquid chromatography - mass spectrometer (UHPLC-MS), different compounds from Dendropanax morbifera extract showed antivirus potentials. Antimicrobial experiments confirmed that the air-disinfectant containing Dendropanax morbifera can eliminate harmful microorganisms including Gram (-), Gram (+), and yeast within 5 mins. The as-prepared air-disinfectant also showed high antivirus activity against H1N1, HRV, and EV71. Deodorization test also indicates that the as-prepared air-disinfectant can lower the harmful gas such as ammonia and trimethylamine in the atmosphere. To evaluate the potential of air-disinfectant containing Dendropanax morbifera in practical applications, different safety tests including acute oral toxicity, acute skin irritation, and eye irritation were conducted. Results showed that the as-prepared disinfectant did not negatively affect tested animals during these safety investigations.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Simultaneous determination of aromatic material causing allergic in children's products by Gas Chromatography (어린이 제품 중 가스 크로마토그래피를 이용한 알러지 유발 방향성 물질의 동시분석법)

  • Ko, Kyeong Mok;Rhu, Chan Joo;Kim, Jong Won;Lee, Seok Ki
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • Twenty-two allergy-induced aromatics in children were analyzed using a gas chromatography flame ionization detector (GC-FID) and gas chromatography mass spectrometer (GC-MSD). Analytes were extracted using an automatic Soxhlet extractor and centrifuged for 10 min in a fast freezing centrifuge, and the supernatant was transferred into a 2 mL vial and injected in split mode. Under the established conditions, the calibration curve showed linearity with a correlation coefficient of 0.996 or more. A wide range of sensitivity of 6.7 to 1,859,839 depending on the device characteristics and detector used was shown. The detection limit of the device was 0.0032 to $0.0335{\mu}g/mL$, and the maximum detection limit was less than $0.1{\mu}g/mL$. The detection limit of the method ranged from 0.0033 to $0.1161{\mu}g/mL$. In addition, the limit of quantification ranged from 0.0100 to $0.5422{\mu}g/mL$, with a level of precision ranging from 0.21 % to 4.89 % and a degree of accuracy ranging from 89 % to 111 %. The analytical method developed in this study was applied to commercial products.