• Title/Summary/Keyword: gas bubble

Search Result 322, Processing Time 0.027 seconds

Inhanced Oxygen Supply of Xanthan Fermentations Using either Hydrogen Peroxide or Fluidized Particles in Tower Bioreators (탑형 생물반응기에서 과산화수소 또는 유동화 입자를 이용만 Xanthan 발효의 산소공급 향상)

  • 서일순
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2002
  • The decomposition of hydrogen peroxide was used for supplementing the oxygen during batch xanthan fermentations in a bubble column bioreactor in order to escape the oxygen transfer limitation that occurred at the high viscosity of culture broths. The xanthan production, however, was inhibited reversibly by dosing hydrogen peroxide. On the other hand, fluidized particles of glass beads with 8 mm diameter led to high gas-liquid oxygen transfer rates in three-phase fluidized beds, which resulted in higher space-time yields of the xanthan production compared to in the bubble column bioreactors.

Dynamic Electrical Breakdown Characteristics of Cryogenic Liquid (극저온 액체의 동적 절연파괴 특성)

  • 김상현;김현희;김영석;정종만;정순용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.321-326
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen($LN_2$) taking into consideration for application of high $T_c$ superconductor is very important. Also $LN_2$ will be used as both coolant and insulator in superconducting generator. In this paper, we investigated ac breakdown characteristics of cryogenic nitrogen gas above a $LN_2$ for rod-to plane electrode configuration. As result the breakdown mechanism of $LN_2$is dependence on bubble effect. And breakdown voltage is a ratio on bubble s size but electrodes arrangement is to make no difference. The breakdown voltage decreases slightly with increasing flow velocity, it again decreases abruptly with increasing flow velocity. These results were interpreted as the within pressure of rod electrode and Maxwell force.

  • PDF

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

The discharge characteristics for various electrode shapes under negative high-voltagein in Liquid $SF_6$ ((-)전압 인가시 액체 $SF_6$의 전극형상에 따른 절연파괴특성)

  • Choi, Eun-Hyuck;Park, Kwang-Seo;Kim, Lee-Kook;Lee, Kwang-Sik;Do, Dae-Ho;Kim, Jong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2085-2087
    • /
    • 2005
  • In this paper the experiments of insulation characteristics by temperature change of $SF_6$ gas and liquid $SF_6$ in model GIS(Gas Insulated Switchgear) were described. From this results, the breakdown voltage was increased with a drop of temperature and an increase of the inner pressure in model GIS. The ability of insulation in liquid $SF_6$ was higher than that of the highly pressurized $SF_6$ gas. A liquid $SF_6$ discharge characteristics was caused by bubble formed evaporation of liquid $SF_6$ and bubble caused by high electric emission. It is considered that these result are fundamental data for electric insulation design of superconductor and cryogenic application machinery which will be studied and developed in the future.

  • PDF

Experimental Study on the Characteristics of Microbubbles Generated by an Effervescent Tablet in Water (수중 내 발포성 정제로부터 생성된 미세기포 특성에 관한 실험적 연구)

  • Myeong, Jaewon;Maeng, Juyoung;Kim, Young Jun;Cho, Kyungmin;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Sohn, Youngku;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.84-91
    • /
    • 2021
  • Effervescent tablets generate gas bubbles when chemical reaction occurs between water and tablets. Most of previous studies have been focused on pharmaceutical characteristics of tablets. However, for their applications in disinfectants, cleaners, and pesticides, physical characteristics of bubbles released from the effervescent tablets when they are in water are important. In this study, we experimentally investigated the characteristics of microbubbles generated by an effervescent tablet made of sodium bicarbonate and tartaric acid using PDPA and high-speed camera. Microbubbles were generated using different weights of effervescent tablet as well as in different water temperature. The experimental study shows increase in reaction time, bubble concentration and rise velocity as the weight of effervescent tablet increases from 1 to 20 g. The decrease in average bubble diameter was observed when the temperature of water increased from 25 to 45 ℃. Further, reaction time varies inversely with increase in water temperature, while bubble rise velocity is directly proportional to increase in water temperature. Effervescent table continuously generates the bubble with approximately constant diameter (235 ㎛) in the water. However, bubble concentration and bubble rise velocity decreased over time.

$CO_2$ Fixation by Chlorella HA-1 Cultured in Bubble Columns. (기포탑 반응기에서 Chlorella HA-1의 $CO_2$ 고정화 특성)

  • 성기돈;이진석;신철승;김미선;박순철;김승욱
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • The characteristics of $CO_2$ fixation by Chlorella HA-1 cultured in bubble columns were studied to achieve high photosynthetic rates per basal area. The influence of experimental conditions such as the diameter of a bubble column and gas flow rate, on photosynthesis of Chlorella HA-1 was investigated. The maximum productivity and the overall $CO_2$ fixation rate obtained in a 0.15 L bubble column was 1.09 g dry biomassa-day and 1048 g CO$_2/\m^2$-day, respectively. Light limitation has been observed in the bubble columns having a diameter larger than 3.5 cm.. As the reactor volume increased, the decrease of the $CO_2$ fixation rate was remarkable. High gas flow rate was helpful to mitigate the light limitation problem.

  • PDF

Technology Trend for Gas Hydrate Production Method by the Patent Analysis (특허 분석에 의한 가스 하이드레이트 제조 기술 동향)

  • Kang, Seong-Pil;Seo, Yu-Teak;Keum, Young-Sup;Ahn, Myung-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.171-181
    • /
    • 2008
  • There are several methods for the gas hydrate production such as spraying water with countercurrent gas flow, stirring water-gas mixture, and flowing water with micro-bubble, etc. These days it has been widely studied for the gas hydrate production method, having low energy consumption and high efficiency. In this paper, patents in the gas hydrate production method were gathered and analyzed. The search range was limited to the open patents of USA, European Union (EP), Japan (JP), and Korea (KR) from 1991 to 2007. Patents were gathered by using keywords searching and filtered by crucial criteria. The trends of the patents were analyzed by the years, countries, companies, and technologies.

A Study on the Flow Characteristics of Liquid Phase in Air-Water Model (Air-Water 모델에서 액상의 유동특성에 관한 연구)

  • Oh, Yool-Kwon;Seo, Dong-Pyo;Park, Seol-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • In the present study, the gas injection system based on air-water model was designed to investigate the flow characteristics of liquid phase. A PIV system was applied to analyze the flow pattern in a ladle which gas stated to rise upward from the bottom. Gas flow is one of most important factors which could feature a flow pattern in a gas injection system. As the gas injected into the liquid, the kinetic energy of bubble transfer to liquid phase and a strong circulation flow develops in the liquid phase. Such a flow in the liquid develops vortex and improve the mixing process. Due to the centrifugal force, circulation flow was well developed near both wall sides and upper region respectively. Increasing gas flow was helpful to remove dead zone but, weak flow zone still exists in spite of the increasement of gas flow rate.

Characterization of Arthrospira platensis Cultured in Nano-bubble Hydrogen Water (나노기포 수소수에서 배양한 Arthrospira platensis 특성 확인)

  • Seo, Ji-Hye;Choi, Soo-Jeong;Lee, Sang-Hoon;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2015
  • Arthrospira platensis (A. platensis) has been used in various fields including dietary supplements as it contains a high protein content and large amounts of unsaturated fatty acids. In addition, it has some pigments such as phycocyanin, myxoxanthophyll and zeaxanthin and thus has been used as a food additive and antioxidant substance. Nano-bubble hydrogen is to dissolve more than the saturation solubility in water by injecting the hydrogen gas in the nano-bubble hydrogen water. The nano-bubbles are known to possess higher antioxidant properties in addition to anticancer effects. In this paper, Arthrospira platensis was cultured in both a normal medium with distilled water and nano-bubble hydrogen water medium and their properties were compared. The cell growth and the content of chlorophyll and carotenoid in the nano-bubble hydrogen water was 15% higher than that of the control. The level of phycocyanin in nano-bubble hydrogen water was also 7% higher than that of the control. However, there were little differences in the lipid content between the nano-bubble and control. To determine the content of the antioxidants, the level of flavonoid and polyphenol were measured. The level of flavonoid in nano-bubble hydrogen water was found to be more than 70% increased when comparing to that of the control, while the level of polyphenol was similar to each other.

Study on the Convergency Improvement Method for the Saturation-Property Calculation of Multi-Component Hydrocarbon Systems (다성분 탄화수소혼합물 포화물성해석 수렴도 향상 연구)

  • Shin, Chang-Hoon;An, Seung-Hee;Lee, Jeong-Hwan;Sung, Won-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.947-955
    • /
    • 2010
  • Most oil and gas reservoirs, which have some light hydrocarbon components, show sensitive phase behavior in response to changes in the composition of the internal fluid. When evaluating and developing plans for oil and gas fields, flash calculation, PVT analysis, and saturation-property calculation are necessary for analyzing reservoir characteristics and pipeline flows. In general, the determination of saturation properties such as dew point and bubble point is considered a difficult task because of the poor convergence of the calculation methods. In this study, several new initial-value-guessing methods and root-finding methods are proposed; parametric analysis were carried out to verify the improvement in convergence. Finally, these new ideas and methods were successfully applied to the new GUI based multi-phase behavior simulator.