• Title/Summary/Keyword: gas accident

Search Result 628, Processing Time 0.022 seconds

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

A Study on Application Design Scenarios for the Gas Safety Field Workers -focused on the pipe work- (가스 작업 안전 앱 시나리오 설계에 대한 연구 -배관 작업을 중심으로-)

  • Lee, Jooah;Kim, Mi-Hye;Kang, Bong Hee
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.273-281
    • /
    • 2016
  • The issue about the safety management of gas related work has been studied toward a direction to utilize IoT system recently. For this purpose, the matters of user's demand has been deduced through the literature survey, field survey, and professional consultation, by studying the characteristics of worker, work, and work site. In summary, these are the demands for mobile App, 1)a clear arrangement of contents, 2)a design with high readability, 3)a design with low death, 4) securing of user's accessibility, 5)an effective information transmission plan in the work section where it is impossible to operate the mobile device, 6)an activation of alarm function at the section of high working error, 7)a fast two-way transmission and receipt of safety inspection matter needed at work, 8)a selection of images and contents that can guide the situation to the worker in case of accident, 9)an alarm function for the degree of danger in an area of worker's location. Based on these, a basic design of safety application for gas related work has been proposed, that can secure the user accessibility.

A Study on the Performance and Exhaust Emissions Characteristics of LPG Engine using LPG Fuel with New Sulfur Free Odorant (새로운 비황분계 부취제 혼합 LPG 연료의 엔진성능과 배출가스 특성에 관한 연구)

  • Kim, Jae-Kon;Yim, Eui Soon;Min, Kyong-Il;Jung, Choong-Sub
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.88-95
    • /
    • 2014
  • In general, odorants are added to fuel gases, such as LPG, LNG and city gas, to prevent gas poisoning, ignition, explosion, or other accident caused by fuel gases, and to enable immediate and easy detection of fuel-gas leakage by emitting an offensive smell. This study describes a study on the performance and exhaust emissions (CO, THC, $CO_2$, $NO_x$, $SO_2$) characteristics of liquefied petroleum gas (LPG) engine using LPG fuel with new sulfur free odorant (K-Petro S-Free). New sulfur free odorant (40 mg/kg) was added to 2 type LPG fuels for summer, and winter and it was used in performance and exhaust emissions, compare to LPG fuel with sulfur containing odorant (EM, ethyl mercaptan). Engine performance using LPG with sulfur free odorant was similar to LPG with sulfur-containing odorant. Exhaust emissions (CO, THC, $CO_2$, $NO_x$) of LPG with sulfur free odorant were also similar characteristics, compare with sulfur containing odorant. Especially, $SO_2$ emission using LPG with K-Petro S-Free odorant was more reduced 83 % than LPG with sulfur containing odorant(EM) at 2000 rpm.

A study on the explosion proof by the electric discharge on voltage application type (전압인가식 제전기의 방폭화에 관한 연구)

  • Lee Chun Ha;Kim Jum Ho;Park Min Young
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.62-69
    • /
    • 2004
  • It is necessary to eliminate the electric static for the prevention of disasters by electric static discharge, the improvement of production efficiency, the protection of a sensitive electronic devices in the variable manufacturing processes. Then it is handled for elimination of electric static in the painting plant, the film manufacturing plant, the producing semi-conductor factory. This study described on the ideal condition of electric static elimination efficiency by changing of the length of voltage input type eliminator's bar, the length of copper pipe and the gap of electrode and the existence of explosion by inflammable gas with that conditions. As the result, the electric static elimination efficiency has the most ideal value at the 8-11(mm) gap of the earth electrode and needle type electrode each elimination bar and there is not explode at the explosive experiment of inflammable gas with the ideal elimination bar. We can consider that there are some data which are needed for elimination efficiency and it will be able to protect the occurrence of explosion accident inflammable nas in the industrial fields.

  • PDF

A Study on the Mortality in Oxygen and Toxic Gas Concentration According using Experimental Animals (실험동물을 이용 산소 및 유해가스 농도에 따른 치사율 연구)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.18-25
    • /
    • 2013
  • It may occur health hazards or death by suffocation or acute poisoning in case of oxygen deficiency in ambient or exposure to harmful gas. As a part of accident prevention, we studied the change of activity and lethal dose by changing the concentration of several hazardous gas with inhalation exposure chamber and laboratory animals. We investigated the lethality and motility change during either the 4 hrs whole body exposure to oxygen, nitrogen, toluene, $H_2S$, CO and 48 recovery. As results, it is estimated that 5% oxygen concentration as lethal concentration and 5.5% as $LC_{50}$ (rat, 4 hrs) with statistics for dose-response. The results of lethality in oxygen deficient condition (approximately 6%), the lethalities were 40%, 20% with 20 ppm $H_2S$, 600 ppm CO respectively, and was not increased the lethality with 8% CO. Thus, it was confirmed that the $H_2S$, CO had influence to lethal dose, while toluene had low fluence.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

Risk Management for Ammonia Unloading and Storage Tank Facility (암모니아 입하 및 저장시설에서의 위험도 관리)

  • Jeong, Yun Seo;Woo, In Sung;Lim, Jong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.95-103
    • /
    • 2017
  • A lot of hazardous materials have been used for product processing and utility plant. Many accidents including toxic release, fire and explosions occur in the ammonia related facility and plant. Various safety and environment management program including PSM, SMS, ORA etc. are being implemented for risk management and accident prevention in the production industry. Also much study and research have been carried about risk assessment of accident scenario in the academic and research area. In this paper, firstly risk level was assessed by using a typically used KORA program and LOPA PFD method for the selected ammonia unloading and storage facility. And then risk reduction measures for the risk assessed facility were studied in 3 aspects and some measures were proposed. Those Risk Reduction measures are including a leak detection and emergency isolation, water spray, dilution tank, dike and trench, scattering protection in hardware impovement aspect, and a applicable risk criteria, conditional modifier for existing LOPA PFD, alternative supporting modeling program in risk estimation methodology aspect, and last RBPS(Risk Based Process Safety) program, re-doing of process hazard analysis, management system compliance audit in managerial activity aspect.

Mobile Sensor Velocity Optimization for Chemical Detection and Response in Chemical Plant Fence Monitoring (사업장의 경계면에서 화학물질 감지 및 대응을 위한 이동식 센서 배치 최적화)

  • Park, Myeongnam;Kim, Hyunseung;Cho, Jaehoon;Lulu, Addis;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.41-49
    • /
    • 2017
  • Recently, as the number of facilities using chemicals is increasing, the amount of handling is rapidly increasing. However, chemical spills are occurring steadily, and if large quantities of chemicals are leaked in time, they are likely to cause major damage. These industrial complexes use information obtained from a number of sensors to detect and monitor leaking areas, and are used in industrial fields by applying existing fixed sensors to robots and drones. Therefore, it is necessary to propose a sensor placement method at the interface for rapid detection and response based on various leaking scenarios reflecting leaking conditions and environmental conditions of the chemical handling process. In this study, COMSOL was used to analyze the actual accident scenarios by applying the medium parameter to the case of chemical leaks. Based on the accident scenarios, the objective function is selected so that the velocity of each robot is calculated by attaching importance to each item of sensor detection probability, sensing time and sensing scenario number. We also confirmed the feasibility of this method of reliability analysis for unexpected leak accidents. Based on the above results, it is expected that it will be helpful to trace back the leakage source based on the concentration data of the portable sensor to be applied later.

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

Risk Assessment of Semiconductor PR Process based on Frequency Analysis of Flammable Material Leakage (반도체 PR 공정의 인화성 물질 누출 빈도분석을 통한 위험성 평가)

  • Park, Myeongnam;Chun, Kwang-Su;Yi, Jinseok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.1-10
    • /
    • 2021
  • Semiconductor Photo Resist (PR) automation equipment uses a mixture of several flammable substances, and when it leaks during the process, it can lead to various accidents, therefore, risk assessment is necessary. This study analyzed the frequency of leakage of Acetone and PGMEA used in PR automation equipment and the frequency at which such leakage could lead to a fire accident through the frequency analysis method, and evaluated the need for additional risk reduction measures in the current facility. Based on the process leak data and ignition probability data of IOGP, leak frequency analysis and ignition probability were derived, and the frequency of actual fire accidents was analyzed by combining them. The frequency of material leakage in semiconductor PR process is 7.30E-03/year, and fire accidents can occur by acetone that exists above the flash point when the material is leaked, the frequency was calculated at the level of 1.24E-05/year. According to the UK HSE, for a major accident occurring with a frequency of 1.24E-05/year, it is defined as "Broadly Acceptable", a level that does not require additional measures for risk reduction when it causes 7 or less deaths, and due to the process operated by two people, no additional risk reduction are required.