DOI QR코드

DOI QR Code

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Received : 2023.07.10
  • Accepted : 2023.11.19
  • Published : 2024.04.25

Abstract

The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Keywords

Acknowledgement

The simulations presented in this paper were performed at the Swierk Computing Centre in the Department of Complex Systems at the National Centre for Nuclear Research, Poland. This work is part of the studies in the strategic Polish program of scientific research and development work "Social and economic development of Poland in the conditions of globalizing markets GOSPOSTRATEG", part of "Preparation of legal, organizational and technical instruments for the HTR implementation" financed by the National Centre for Research and Development (NCBiR) in Poland. M.J. is a recipient of scholarships within the framework of the project New Reactor Concepts and Safety Analyses for the Polish Nuclear Energy Program (POWR.03.02.00-00- I005/17) implemented under the Operational Programme Knowledge Education Development 2014-2020 co-financed by the European Social Fund.

References

  1. Giorgio Locatelli, Mauro Mancini, Nicola Todeschini, Generation IV nuclear reactors: Current status and future prospects, Energy Policy (ISSN: 0301-4215) 61 (2013) 1503-1520, http://dx.doi.org/10.1016/j.enpol.2013.06.101.
  2. Sumer Sahin, Haci Mehmet Sahin, Generation-IV reactors and nuclear hydrogen production, Int. J. Hydrogen Energy (ISSN: 0360-3199) 46 (57) (2021) 28936-28948, http://dx.doi.org/10.1016/j.ijhydene.2020.12.182, Hydrogen Energy Systems.
  3. Zuoyi Zhang, Zongxin Wu, Dazhong Wang, Yuanhui Xu, Yuliang Sun, Fu Li, Yujie Dong, Current status and technical description of Chinese 2×250MWth HTR-PM demonstration plant, Nucl. Eng. Des. (ISSN: 0029-5493) 239 (7) (2009) 1212-1219, http://dx.doi.org/10.1016/j.nucengdes.2009.02.023.
  4. Taiju Shibata, Tetsuo Nishihara, Shinji Kubo, Hiroyuki Sato, Nariaki Sakaba, Kazuhiko Kunitomi, Present status of JAEA's R&D toward HTGR deployment, Nucl. Eng. Des. (ISSN: 0029-5493) 398 (2022) 111964, http://dx.doi.org/10.1016/j.nucengdes.2022.111964.
  5. Hirofumi Ohashi, Hiroyuki Sato, Minoru Goto, Xing Yan, Junya Sumita, Yujiro Tazawa, Yasunobu Nomoto, Jun Aihara, Yoshitomo Inaba, Yuji Fukaya, et al., A small-sized HTGR system design for multiple heat applications for developing countries, Int. J. Nucl. Energy 2013 (2013).
  6. Eleonora Skrzypek, Dominik Muszynski, Maciej Skrzypek, Piotr Darnowski, Janusz Malesa, Agnieszka Boettcher, Mariusz P. Dabrowski, Pre-conceptual design of the research high-temperature gas-cooled reactor TeResa for nonelectrical applications, Energies (ISSN: 1996-1073) 15 (6) (2022) 2084, http://dx.doi.org/10.3390/en15062084.
  7. Brian Mays, Lewis Lommers, Stacy Yoder, Farshid Shahrokhi, Sensitivity of SC-HTGR conduction cooldown to reactor cavity cooling system failure, Nucl. Technol. 208 (8) (2022) 1311-1323, http://dx.doi.org/10.1080/00295450.2021.1947664.
  8. Darius Lisowski, Qiuping Lv, Bogdan Alexandreanu, Yiren Chen, Rui Hu, Tanju Sofu, An Overview of Non-LWR Vessel Cooling Systems for Passive Decay Heat Removal, (Technical Letter Final Report). Technical report, Argonne National Laboratory, 2021, http://dx.doi.org/10.2172/1786964.
  9. Khaled Talaat, Minghui Chen, Design of a prototypical natural circulation water-based reactor cavity cooling system (RCCS) for a pebble-bed generic FHR, Nucl. Eng. Des. (ISSN: 0029-5493) 407 (2023) 112303, http://dx.doi.org/10.1016/j.nucengdes.2023.112303.
  10. D.D. Lisowski, T.C. Haskin, A. Tokuhiro, M.H. Anderson, M.L. Corradini, Study on the behavior of an asymmetrically heated reactor cavity cooling system with water in single phase, Nucl. Technol. 183 (1) (2013) 75-87, http://dx.doi.org/10.13182/NT13-A16993, arXiv:https://doi.org/10.13182/NT13-A16993.
  11. Alexander J. Huning, Sriram Chandrasekaran, Srinivas Garimella, A review of recent advances in HTGR CFD and thermal fluid analysis, Nucl. Eng. Des. (ISSN: 0029-5493) 373 (2021) 111013, http://dx.doi.org/10.1016/j.nucengdes.2020.111013.
  12. Henrique Austregesilo, Philipp Schoffel, Daniel Cron, Fabian Weyermann, Andreas Wielenberg, Kin Wing Wong, ATHLET 3.3 user's manual, 2021.
  13. P. Emonot, A. Souyri, J.L. Gandrille, F. Barre, CATHARE-3: A new system code for thermal-hydraulics in the context of the NEPTUNE project, Nucl. Eng. Des. (ISSN: 0029-5493) 241 (11) (2011) 4476-4481, http://dx.doi.org/10.1016/j.nucengdes.2011.04.049, URL https://www.sciencedirect.com/science/article/pii/S0029549311004018, 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13).
  14. M-Tech Industrial, Flownex SE, 2023, URL https://www.flownex.com/, Version 8.15.0.
  15. Hong Lim, Hee No, GAMMA multidimensional multicomponent mixture analysis to predict air ingress phenomena in an HTGR, Nucl. Sci. Eng. 152 (2006) 87-97, http://dx.doi.org/10.13182/NSE06-5.
  16. L.L. Humphries, et al., MELCOR Computer Code Manuals, Vol. 1: Primer and Users' Guide, Version 2.1.6840, Technical Report SAND2015-6691R, Sandia National Laboratories, 2015.
  17. U.S. NRC, 2014. TRAC/RELAP Advanced Computational Engine (TRACE) V5.840 USER'S MANUAL Volume 1: Input Specification, US NRC, Washington, DC, 2014.
  18. P.G. Rousseau, C.G. du Toit, J.S. Jun, J.M. Noh, Code-to-code comparison for analysing the steady-state heat transfer and natural circulation in an air-cooled RCCS using GAMMA+ and flownex, Nucl. Eng. Des. (ISSN: 0029-5493) 291 (2015) 71-89, http://dx.doi.org/10.1016/j.nucengdes.2015.05.004, URL https://www.sciencedirect.com/science/article/pii/S0029549315001910.
  19. Marcos S. Sena, Yassin A. Hassan, Thermal-hydraulic behavior simulations of the reactor cavity cooling system (RCCS) experimental facility using Flownex, Nucl. Eng. Technol. (ISSN: 1738-5733) 55 (9) (2023) 3320-3325, http://dx.doi.org/10.1016/j.net.2023.05.023, URL https://www.sciencedirect.com/science/article/pii/S1738573323002498.
  20. Shoji Takada, Yasuaki Shiina, Yoshiyuki Inagaki, Makoto Hishida, Yukio Sudo, Benchmark Problem for IAEA Coordinated Research Program (CRP-3) on GCR Afterheat Removal (I), Technical Report, JAERI-Research 95-056, JAEA, 1995.
  21. Darius D. Lisowski, Craig D. Gerardi, Dennis J. Kilsdonk, Nathan C. Bremer, Stephen W. Lomperski, Rui Hu, Adam R. Kraus, Matthew D. Bucknor, Qiuping Lv, Taeseung Lee, Mitchell T. Farmer, Final Project Report on RCCS Testing with Air-based NSTF, http://dx.doi.org/10.2172/1350591 URL https://www.osti.gov/biblio/1350591.
  22. Darius Lisowski, Qiuping Lv, Nathan Bremer, Rui Hu, Adam Kraus, Dennis Kilsdonk, Steve Lomperski, Mitch Farmer, Report on Year-2 of Water NSTF Matrix Testing, http://dx.doi.org/10.2172/1782658, URL https://www.osti.gov/biblio/1782658.
  23. Darius D. Lisowski, Adam R. Kraus, Matthew D. Bucknor, Rui Hu, Mitch T. Farmer, Experimental observations of natural circulation flow in the NSTF, Nucl. Eng. Des. (ISSN: 0029-5493) 306 (2016) 124-132, http://dx.doi.org/10.1016/j.nucengdes.2016.01.014, URL https://www.sciencedirect.com/science/article/pii/S0029549316000248, 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014).
  24. Tomasz Kwiatkowski, Afaque Shams, Towards the accurate prediction of axial flow and heat transfer in a tightly spaced bare rod bundle configuration, Nucl. Eng. Des. (ISSN: 0029-5493) 403 (2023) 112119, http://dx.doi.org/10.1016/j.nucengdes.2022.112119, URL https://www.sciencedirect.com/science/article/pii/S0029549322004708.
  25. Afaque Shams, Tomasz Kwiatkowski, Towards the direct numerical simulation of a closely-spaced bare rod bundle, Ann. Nucl. Energy (ISSN: 0306-4549) 121 (2018) 146-161, http://dx.doi.org/10.1016/j.anucene.2018.07.022, URL https://www.sciencedirect.com/science/article/pii/S0306454918303712.
  26. Ramiro Freile, Mauricio Tano, Paolo Balestra, Sebastian Schunert, Mark Kimber, Improved natural convection heat transfer correlations for reactor cavity cooling systems of high-temperature gas-cooled reactors: From computational fluid dynamics to pronghorn, Ann. Nucl. Energy (ISSN: 0306-4549) 163 (2021) 108547, http://dx.doi.org/10.1016/j.anucene.2021.108547.
  27. Angelo Frisani, Yassin A. Hassan, Victor M. Ugaz, Computational fluid dynamics analysis of very high temperature gas-cooled reactor cavity cooling system, Nucl. Technol. 176 (2) (2011) 238-259, http://dx.doi.org/10.13182/NT11-A13299, arXiv:https://doi.org/10.13182/NT11-A13299.
  28. Angelo Frisani, Yassin A. Hassan, Computation fluid dynamics analysis of the reactor cavity cooling system for very high temperature gas-cooled reactors, Ann. Nucl. Energy (ISSN: 0306-4549) 72 (2014) 257-267, http://dx.doi.org/10.1016/j.anucene.2014.04.039.
  29. Shoji Takada, I Wayan Ngarayana, Yukihiro Nakatsuru, Atuhiko Terada, Kenta Murakami, Kazuhiro Sawa, Establishment of reasonable 2-D model to investigate heat transfer and flow characteristics by using scale model of vessel cooling system for HTTR, Mech. Eng. J. 7 (3) (2020) 19-00536, http://dx.doi.org/10.1299/mej.19-00536.
  30. International Atomic Energy Agency, Heat Transport and Afterheat Removal for Gas Cooled Reactors under Accident Conditions, Technical Report, IAEA, Vienna 2001, IAEA TECDOC1163.
  31. ANSYS Inc, Ansys Fluent Theory Guide, Technical Report, ANSYS Inc., USA, 2022, Release 2022 R1.
  32. A. Shams, D. De Santis, A. Padee, P. Wasiuk, T. Jarosiewicz, T. Kwiatkowski, S. Potempski, High-performance computing for nuclear reactor design and safety applications, Nucl. Technol. (ISSN: 19437471) 206 (2) (2020) 283-295, http://dx.doi.org/10.1080/00295450.2019.1642683.
  33. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, 1997.
  34. Y.S. Touloukian, P.E. Liley, S.C. Saxena, Thermophysical Properties of Matter, Vol. 3: Thermal Conductivity, IFI/Plenum, New York, NY, 1970, ISBN 0-306067020-8.
  35. Y.S. Touloukian, S.C. Saxena, P. Hestermans, Thermophysical Properties of Matter, Vol. 11: Viscosity, IFI/Plenum, New York, NY, 1970, ISBN 0-306067020-8.
  36. D.Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem.: Fundam. 15 (1976) 59-64.
  37. D. Ganta, E.B. Dale, J.P. Rezac, A.T. Rosenberger, Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator, J. Chem. Phys. (ISSN: 0021-9606) 135 (8) (2011) 084313, http://dx.doi.org/10.1063/1.3631342.