• Title/Summary/Keyword: gas Separation

Search Result 1,003, Processing Time 0.025 seconds

Preparation of TiCoxFe1-x(x=0.50~1.00) System Metal Membrane for Hydrogen Separation (수소분리용 TiCoxFe1-x(x=0.50~1.00)계 금속막 제조)

  • Jang, Kyu-young;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.191-201
    • /
    • 2015
  • We have studied on the preparation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy, the characteristics of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy by X-ray diffractometer (XRD), pressure composition temperature (PCT) curve, scanning electron microscopy (SEM) and the $H_2-N_2$ gas mixture separation of $TiCo_xFe_{1-x}$(x=0.50~1.00)- stainless steel (SS) composite membranes. The formation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys with cubic crystal same as TiCo was confirmed by X-ray diffractometer. $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys showed the hysteresis at $120^{\circ}C$. As the Fe content of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys increased, the hysteresis was increased both range x=0.90~1.00 and x=0.55~0.60, and the range x=0.55~0.90 gave decreased hysteresis. $TiCo_{0.55}Fe_{0.45}$ alloy was the one showed the lowest hysteresis among them. The lowest value of hydrogen permeation pressure of $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membrane was $TiCo_{0.55}Fe_{0.45}$-SS composite membrane with the value of 2.5 atm at $120^{\circ}C$; otherwise, $TiCo_{0.90}Fe_{0.10}$-SS composite had the highest pressure value among the membranes with the value of 10 atm. $TiCo_{0.55}Fe_{0.45}$-SS composite membrane was the best to separate the $H_2-N_2$ gas mixture excellently among the $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membranes since $TiCo_{0.55}Fe_{0.45}$ had the least hysteresis, and hydrogen permeation pressure was the lowest with value of 2.5 atm.

Continuous Process for the Etching, Rinsing and Drying of MEMS Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 미세전자기계시스템의 식각, 세정, 건조 연속 공정)

  • Min, Seon Ki;Han, Gap Su;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.557-564
    • /
    • 2015
  • The previous etching, rinsing and drying processes of wafers for MEMS (microelectromechanical system) using SC-$CO_2$ (supercritical-$CO_2$) consists of two steps. Firstly, MEMS-wafers are etched by organic solvent in a separate etching equipment from the high pressure dryer and then moved to the high pressure dryer to rinse and dry them using SC-$CO_2$. We found that the previous two step process could be applied to etch and dry wafers for MEMS but could not confirm the reproducibility through several experiments. We thought the cause of that was the stiction of structures occurring due to vaporization of the etching solvent during moving MEMS wafer to high pressure dryer after etching it outside. In order to improve the structure stiction problem, we designed a continuous process for etching, rinsing and drying MEMS-wafers using SC-$CO_2$ without moving them. And we also wanted to know relations of states of carbon dioxide (gas, liquid, supercritical fluid) to the structure stiction problem. In the case of using gas carbon dioxide (3 MPa, $25^{\circ}C$) as an etching solvent, we could obtain well-treated MEMS-wafers without stiction and confirm the reproducibility of experimental results. The quantity of rinsing solvent used could be also reduced compared with the previous technology. In the case of using liquid carbon dioxide (3 MPa, $5^{\circ}C$, we could not obtain well-treated MEMS-wafers without stiction due to the phase separation of between liquid carbon dioxide and etching co-solvent(acetone). In the case of using SC-$CO_2$ (7.5 Mpa, $40^{\circ}C$), we had as good results as those of the case using gas-$CO_2$. Besides the processing time was shortened compared with that of the case of using gas-$CO_2$.

Gas Permeation Properties of Sulfonated 6FDA-Based Polyimide Membranes Exchanged with Metal Ions (금속이온이 치환된 설폰화된 6FDA계 폴리이미드 막의 기체 투과 특성)

  • Im, Hyeon-Soo;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Koh, Hyung-Chul;Lee, Choong-Sub;Ha, Seong-Yong;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.555-560
    • /
    • 2009
  • Sulfonic acid of the sulfonated 6FDA-based polyimides were exchanged with the monovalent ($Li^+$, $Na^+$, $K^+$) and divalent ($Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$) ions. The effect of metal cations exchanged sulfonated polyimides was investigated in terms of gas permeability and selectivity for $CO_2$, $O_2$ and $N_2$ gases. Thermogravimetric analysis showed that thermal stability of sulfonated polyimide was improved by exchanged metal cations. The permeabilities of monovalent cation-exchanged, sulfonated polyimide were reduced as the ion radius reduced [$Li^+$(0.059 nm)>$Na^+$(0.102 nm)>$K^+$(0.138 nm)], and those of divalent cations exchanged were determined by the ionic radii and electrostatic crosslinking between the polymer and metal cations, whereas the selectivities of all the metal cation-exchanged, sulfonated polyimides for $CO_2/N_2$ and $O_2/N_2$, were higher than those of sulfonated polyimide membranes. The sulfonated polyimide exchanged with the potassium cation showed the $O_2$ permeability of 89.98 Barrer [$1\times10^{-10}\;cm^3$(STP) $cm/cm^2{\cdot}s{\cdot}cmHg$] and the sulfonated polyimide exchanged with the lithium cation showed the $O_2/N_2$ selectivity of 12.9.

Identification and Quantification of Phytosterols in Maize Kernel and Cob (옥수수 종실 및 속대의 Phytosterol 동정과 함량 변이)

  • Kim, Sun-Lim;Kim, Mi-Jung;Jung, Gun-Ho;Lee, Yu-Young;Son, Beom-Young;Kim, Jung-Tae;Lee, Jin-Seok;Bae, Hwan-Hee;Go, Young-Sam;Kim, Sang-Gon;Baek, Seong-Bum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • Unsaponifiables in the kernel and the cob of 7 maize varieties were analyzed by using thin-layer chromatography (TLC) and gas chromatography (GC) for the identification of phytosterols and their concentrations. The unsaponifiables of the kernel were clearly separated into band I (campesterol, stigmasterol, and ${\beta}$-sitosterol), band II (${\Delta}^5$-avenasterol), band III (${\Delta}^7$- stigmastenol), and band IV (${\Delta}^7$-avenasterol). In the cob, on the other hand, three or more bands were separated in addition to bands. The GC analysis of unsaponifiables showed good separation of campesterol, stigmasterol and ${\beta}$-sitosterol, but the mixture of ${\Delta}^7$-avenasterol (retention time[RT] 22.846), ${\Delta}^7$-stigmastenol (RT 22.852), and ${\Delta}^5$-avenasterol (RT 22.862) showed poor separation. Phytosterol content of the maize kernel was 635.9 mg/100 g, and that of the cob was 273.0 mg/100 g, respectively. The phytosterol content of the kernel was 2.4-fold higher than that of the cob. The phytosterol content of the kernel was higher in the order ${\beta}$sitosterol 80.05% > campesterol 10.5% > stigmasterol 9.46%, but that of the cob was higher in the order ${\beta}$-sitosterol 59.43% > stigmasterol 31.72% > campesterol 10.98%. Based on these results, it appears that the phytosterols of the maize kernel are synthesized in the maize cob and are transferred to the kernel, because the precursors (${\Delta}^7$-avenasterol, ${\Delta}^7$-stigmastenol, and ${\Delta}^5$-avenasterol) of major phytosterols were detected in maize cobs.

Development of in-situ Sintered Ni-Al Alloy Anode for Molten Carbonate Fuel Cell (용융탄산염 연료전지용 in-situ 소결된 Ni-Al 합금 연료극 개발)

  • Chun, H.A.;Yoon, S.P.;Han, J.;Nam, S.W.;Lim, T.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.124-131
    • /
    • 2006
  • For commercialization of molten carbonate fuel cell (MCFC), it has some problems to be overcome such as decrease of porosity and thickness of the anode under the operating condition (at $650^{\circ}C$ and working pressure of more than 2 $kg_f/cm^2$). Recently, Ni-Al alloy anode has been proposed to replace the conventional Ni-Cr anode as an alternative material to resist a creep and inhibit the sintering. The objective of this research is to sinter the green sheet of Ni-Al alloy anode during single cell pre-treatment process, which has several advantages like cost down and simplification of manufacturing process. However, the Ni-Al alloy anode prepared with a conventional pre-treatment process showed the phase separation of Ni-Al alloy and formation of micropore(${\leqq}0.4{\mu}m$), resulting in low creep resistance and high electrolyte re-distribution. In order to prevent the Ni-Al alloy anode from phase-separating, nitrogen gas was used in the process of pre-treatment. Introducing the nitrogen, the phase separation from Ni-Al alloy into nickel and alumina was minimized and increased creep resistance. However, there was some micropore formation on the surface of Ni-Al alloy anode during the cell operation due to creation of lithium aluminate. Addition of more amount of electrolyte into a cell, especially at cathode, made the cell performance stable for 2,000 hrs. Consequently, it was possible to make the Ni-Al alloy anode with good creep resistance by the modified in-situ sintering technique.

Stability of a Silica Membrane in the HI-$H_2O$ Gaseous Mixture (HI-$H_2O$ 기상 혼합물에서 Silica 막의 안정성)

  • HWANG Gab-Jin;PARK Chu-Sik;LEE Sang-Ho;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • The stability of the prepared silica membrane by chemical vapor deposition (CVD) method in the HI-$H_2O$ gaseous mixture was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical IS process. Porous $\alpha$-alumina having pore size of 100 nm was modified by the different CVD temperature using tetraethoxysilane as the Si source. The CVD temperature was $700^{\circ}C$, $650^{\circ}C$, and $600^{\circ}C$. The $H_2$/H$_2$ selectivities of the modified membranes which were measured by single-component permeation experiment showed 43.2, 12.6, and 8.7 at $600^{\circ}C$ for the M1 (CVD temperature was $700^{\circ}C$), M2 (CVD temperature was $650^{\circ}C$) and M3 membranes (CVD temperature was $600^{\circ}C$), respectively. Stability experiment in the HI-$H_2O$ gaseous mixture was carried out at $450^{\circ}C$. The prepared silica membrane at $600^{\circ}C$ of CVD temperature was more stable than that at the other CVD temperature.

Average Fission Neutron Cross Section for $^{93}Nb(n,\alpha)^{90}Y$, $^{90}Zr(n,p)^{90}Y$, $^{93}Nb(n,\alpha)^{90m}Y$and $^{90}Zr(n,p)^{90m}Y$ Reactions ($^{93}Nb(n,\alpha)^{90}Y$, $^{90}Zr(n,p)^{90}Y$, $^{93}Nb(n,\alpha)^{90m}Y$$^{90}Zr(n,p)^{90m}Y$반응의 평균 핵분열 중성자 반응 단면적)

  • Chul Lee;Yung Chang Yim;Koo Soon Chung;Hae-Ill Park
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.20-24
    • /
    • 1973
  • The average fission neutron cross sections were determined for the following reactions, $^{93}Nb(n,\alpha)^{90}Y$, $^{90}Zr(n,p)^{90}Y$,$^{93}Nb(n,\alpha)^{90m}Y$and$^{90}Zr(n,p)^{90m}Y$. The cation exchange column was used for the quantitative separation of the product nuclides using $\alpha-$hydroxyisobutyric acid as the eluent. The absolute activites of $^{90m}Y$ and $^{90}Y$were determined by the gamma ray spectrometry and a calibrated $2\pi$gas flow counter, respectively. The cross sections of $^{93}Nb(n,\alpha)^{90}Y$, $^{90}Zr(n,p)^{90}Y$,$^{93}Nb(n,\alpha)^{90m}Y$and $^{90}Zr(n,p)^{90m}Y$ reactions were found to be$0.14\pm0.01mb$, $0.83\pm0.02mb$, $0.018\pm0.02mb$ and $0.33\pm0.02mb$, respectively. The possible use of $^{90m}Y$ instead of $^{90}Y$ was discussed as a better means for the determination of niobium.

  • PDF

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

Measurement and Calculation of Excess Enthalpies for n-Hexane/Alkane series and NaOH/Water/Ethanol System using Isothermal Microcalorimeter (등온 미세열량계를 이용한 n-Hexane-알칸계 이성분 혼합물 및 NaOH/Water/Ethanol계의 과잉 엔탈피 측정 및 계산)

  • Choi, In Kyu;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.660-667
    • /
    • 2017
  • Equilibrium data of the mixture is essential in the design and operation of separation equipment such as distillation or extraction in chemical processes. These equilibrium data can be obtained through experiments or by calculations using the known binary parameters and the thermodynamic models. Generally, to obtain these parameters, phase equilibrium experimental data such as gas-liquid and liquid-liquid are used. In this study, the excess enthalpy of the mixture was measured using the flow type microcalorimeter which is a simpler method than phase equilibria experiments, and the parameters of various theories were obtained by using this data. In order to investigate the relationship between carbon chain length, enthalpy and binary parameters in the alkane system, excess enthalpies for the n-hexane + alkane (n-pentane, n-heptane, n-octane and n-dodecane) were measured at 298.15 K and the banary interaction parameters of Wilson, NRTL, and UNIQUAC were obtained from the experimental data. In addition, we wanted to obtain basic information on the interaction and association phenomena of the system including electrolyte applicable to various fields by using the excess enthalpy experimental data and the existing theory. First, we investigated the excess enthalpy for the NaOH / Water / Ethanol system as a basic experiment and examined the applicability using the electrolyte-NRTL (eNRTL) theory.

Microbial Conversion of Organic Wastes for Production of Biogas and Algal Biomass (바이오가스와 균체단백질 생산을 위한 유기질 폐기물의 미생물 전환 연구)

  • 권순찬;김진상
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.438-445
    • /
    • 1993
  • Raw cow manure was treated by a 4-step integrated system with phase separation anaerobic digestion and algal culture. When the first methane fermentation was performed by the effluent from the acid fermenter with retention time of 4 days, the elrerage blogas production rate was 977m1/1 culture/day Gas productivity compared to conventional single-stage anaerobic digestion increased up to 31.4%. As the 2nd methane fermenter was fed by the effluent from the first methane fermenter with 4 days of retention time, average amount of 428m1/1 culture/day of biogas was produced. The reduction rate of COD in the effluent from the acid fermenter, the 1st and the 2nd methane fermenter were 71.8%, 42.6% and 24.0% respectively. Finally, we examined algal treatment process for the effluent from the 2nd methane fermenter. A semi-continuous culture of Chlorella sp. PSH3 was conducted by feeding the effluent with retention time of 10days. In this process, the production rate of algal biomass and COD reduction rate were averaged 1.8g/1 culture/day(2.8$\times$106 cells/ml) and 73%, respectively. Through the 4-setp treatments, the total chemical oxygen demand was reduced from 51,300ppm to 85ppm. Therefore, the reduction rate of total chemical oxygen demand reached about 99.8%. The results indicate that the integrated system could be applicable for treatment of organic wastes, concurrently producing biogas and algal biomass.

  • PDF