• Title/Summary/Keyword: gamma-ray mutagenesis

Search Result 27, Processing Time 0.026 seconds

Mutagenesis of of Hypsizygus marmoreus by Gamma Ray Irradiation (감마방사선 조사에 의한 느티만가닥버섯의 변이)

  • Kim, Jong-Kun;Moon, Deok-Hun;Seo, Geon-Sik;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.231-234
    • /
    • 2011
  • This study was performed to develop new Hypsizygus marmoreus cultivars that have enhanced functional materials and improved physiological characteristics with mutagenesis by gamma ray irradiation. Protoplasts of H. marmoreus brown strain HYM-056 were irradiated by gamma ray for mutagenesis, and then 2,000 clones of mutants were randomly selected and the fruiting bodies were induced by bottle culture. Among them, 157 isolates with fast-growing, heavy and many fruiting body-producing were selected. The isolates were cultured in plastic bottle containing rice bran, barley hulls and fir sawdust to form the fruiting bodies. About 100 days after inoculation, characteristic of fruiting bodies were investigated. The isolates were divided into 6 groups based on color, shape and size of pileus, and length, diameter, number and weight of stipe. In addition, the genetic variation of the isolates was analyzed by URP-PCR fingerprinting.

Mutagenesis of Pleurotus eryngii by Gamma Ray Irradiation (감마방사선 조사에 의한 큰느타리버섯의 돌연변이 유발)

  • Kim, Jong-Kun;Lim, Seon-Hwa;Kim, Il-Joong;Lee, Yun-Hae;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.93-97
    • /
    • 2012
  • Gamma ray irradiation mutagenesis was employed to get variants of Pleurotus eryngii with functionally enhanced and improved characteristics. Protoplasts released from P. eryngii were treated with gamma ray radiation under 0.25-1.25 KGy. Protoplast sample that showed fatality rate of 80% at the 0.25 KGy was spreaded on YPMGA (yeast, peptone, malt-extract, glucose, agar) and 500 mycelial colonies were randomly selected from the medium. Of them, 100 mutant strains with mycelial morphology and growth rate that differ to control strain were observed on PDA. The cellulase and laccase activity of 67 gamma ray-irradiated P. eryngii isolates with morphological variation were investigated. Among these, 5 isolates were higher cellulase. In addition, the genetic variation of the mutant strains was analyzed by PCR fingerprinting.

Isolation of Gamma-Induced Rice Mutants with Increased Tolerance to Salt by Anther Culture

  • Lee, In-Sok;Kim, Dong-Sub;Hyun, Do-Yoon;Lee, Sang-Jae;Song, Hi-Sup;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • Doubled haploids have long been recognized as a valuable tool in plant breeding since it not only offers the quickest method of advancing heterozygous breeding lines to homozygosity, but also increased the selection efficiency over conventional procedures due to better discrimination between genotypes within any one generation. Salt tolerant mutants were obtained in rice the variety, 'Hawsungbyeo', through in vitro mutagenesis of in vitro cultured anther-derived calli. Various doses (30, 50, 70 and 90 Gy) of gamma ray were applied to investigate the effect of radiation on callus formation on medium containing 1% NaCl, green plant regeneration, frequency of selected doubled haploid mutants and of the salt tolerant screen. It was demonstrated that the dose of 30 and 50 Gy gamma rays had significant effects on callus formation, regeneration and selection of salt tolerance. No tolerant lines were obtained from non-mutagenized cultures. From gamma ray irradiated cultures, five tolerant lines ($M_2$generation) at germination stage and 13 tolerant lines ($M_3$genoration) at seedling stage were obtained. The frequency of salt tolerant mutants indicates that anther culture applied in connection with gamma rays is an effective way to improve salt tolerance.

Effect of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of Citrullus colocynthis (L.) Schrad

  • Ramakrishna, D.;Chaitanya, G.;Suvarchala, V.;Shasthree, T.
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In the present study in vitro mutagenesis was used to study the effect of gamma irradiation and EMS on callus induction, morphogenesis and production of multiple shoots from different explants of Citrullus colocynthis (L.) Schrad. Gamma radiations (5 kR to 20 kR) and certain chemicals have been effected on plant growth developments and changes of biochemical metabolisms in plants. Murashige and Skoog (MS) medium containing with auxins such as NAA, IAA, 2,4-D (0.5 ~ 2.0 mg/l), cytokinines BAP, kn TDZ, (0.5 ~ 2.5 mg/l), L-Glutamic acid (1 ~ 2 mg/l) and Coconut milk (10 ~ 20%). After 5 weeks on induction media, explants and callus (EC) were exposed to 5 kR, 10 kR, 15 kR and 20kR, of gamma radiation and treated with 1, 2, 3, 4 and 5 mM ethyl methane sulphonate (EMS) for 30 min. The highest percentage of callusing was observed (70%) stem irradiated with 5 kR and significantly decrease in fresh and dry weight of callus in the below 4 kR doses and above 20 kR doses, there was a progressive decrease in the fresh weight and dry weights when compared to control callus. Maximum percentage of plantlet regeneration (59%) was induced from callus exposed to 15 kR gamma irradiation on MS media fortified with 2.0 mg/l 2,4-D + 2.0 mg/l BAP + 2.0 mg/l L-glutamic acid. Increase in gamma irradiation dose above 15 kR and 5 mM EMS reduced regeneration capacity of callus. Doses higher than 20 kR and 7 mM EMS was lethal to micropropagated plants of Citurullus colocynthis.

Loss-of-function and Gain-of-function Rice Mutants from Gamma-Ray Mutagenesis

  • Lee, Seon-Woo;Park, Gyung-Ja;Kim, Jin-Cheol;Kim, Heung-Tae;Park, Yong-Ho;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.301-304
    • /
    • 2003
  • Gamma-ray irradiation is known to induce various mutations in plants caused by chromosome alterations. This study investigated disease responses of selected gamma-ray induced rice mutants generated from seven Japonica-type rice cultivars against three plant diseases. Among the tested 22 mutants, three gain-of-function mutants and six loss-of-function mutants against rice blast were obtained, as well as three loss-of-function mutants against bacterial leaf blight (BLB). Two of the loss-of-function mutants were susceptible to both rice blast and BLB. Gain-of-function mutation has not been frequently observed in rice plants, thus, the mutants can be used to identify loci of novel genes for the regulation of disease resistant response.

Genetic Variation in Mutants Induced by Gamma Ray in Hypsizigus marmoreus (느티만가닥버섯에서 감마선에 의한 돌연변이체들의 유전적 변이)

  • Kim, Jong-Bong;Yu, Dong-Won
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1174-1179
    • /
    • 2014
  • This research was carried out to evaluate whether gamma ray is a useful tool for breeding new strains of mushrooms. For this research, 5 mutant groups, 20 strains of Hypsizigus marmoreus, 2 strains of Lyophyllum decastes, and 1 strain of Lyophyllum shimeji were used. Monokaryon spores from one variety of H. marmoreus were irradiated with 50~2,000 Gy of gamma ray. The propriety dose was 50~200 Gy for mutagenesis. Mutant monokaryon mycelia crossed each order to become dikaryon mycelia. The internal transcribed spacer (ITS) regions of rDNA were amplified using PCR, and the products were sequenced. The sequences of the ITS regions (16 partial rDNA, complete ITS1, 5.8 rDNA and partial rDNA) were analyzed by PCR, and strains of H. marmoreus, L. decastes, and L. shimeji were auto-sequenced. The lengths of the sequenced ITSs were 1,052~1,143 nucleotides. Genetic matrices were calculated using Nei-Li's genetic distance coefficient based on ITS sequence. The dissimilarities were 0~3.35% in strains of H. Hypsizigus. In addition, a phylogenetic tree was constructed based on ITS sequences using the neighbor-joining (NJ) method. The phylogenetic tree revealed that 23 strains and 5 mutant groups were divided into 12 clusters; the mutant groups fell into different clusters. These results show that mushroom spores were mutated effectively by gamma ray; therefore, gamma ray could be a useful tool for breeding new strains of mushrooms.

Production of Haploids from Proton Ion and Gamma-Ray Irradiation Treated $M_2$ Generation of Isolated Microspores in Brassica napus L. ssp. oleifera (앙성자 및 감마선을 처리한 유채 $M_2$ 세대의 소포자로부터 반수체 배발생)

  • Kim, Kwang-Soo;Li, Mei-Yang;Jang, Young-Seok;Park, Yoon-Jung;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.150-155
    • /
    • 2008
  • This experiment was carried out to investigate the effect of proton ion and gamma-ray irradiation on microspore culture of the flower buds of $M_2$ generation in winter type of Brassica napus L. ssp. oleifera. The seeds of three rape varieties, 'Halla', 'Naehan' and 'Tammi' were pretreated with proton ion and gamma-ray 400 Gy and 600 Gy, respectively. When microspore culture techniques were used, embryogenesis was increased in some varieties by proton ion and gamma-ray irradiation treated flower buds of $M_2$ generation than control. In genotypes 'Naehan' showed the highest embryo production frequency, but 'Tammi' showed lowest embryo production frequency. Some of the embryoids developed directly into plantlets, whereas others developed abnormally multilobe. Plants were regenerated and successfully acclimatized in pots.

Strain Improvement Based on Ion Beam-Induced Mutagenesis (이온빔을 이용한 미생물의 균주 개량)

  • Jeong, Hae-Young;Kim, Kye-Ryung
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.235-243
    • /
    • 2010
  • For decades, traditional mutation breeding technologies using spontaneous mutation, chemicals, or conventional radiation sources have contributed greatly to the improvement of crops and microorganisms of agricultural and industrial importance. However, new mutagens that can generate more diverse mutation spectra with minimal damage to the original organism are always in need. In this regard, ion beam irradiation, including proton-, helium-, and heavier-charged particle irradiation, is considered to be superior to traditional radiation mutagenesis. In particular, it has been suggested that ion beams predominantly produce strand breaks that often lead to mutations, which is not a situation frequently observed in mutagenesis induced by gamma-ray exposure. In this review, we briefly describe the general principles and history of particle accelerators, and then introduce their successful application in ion beam technology for the improvement of crops and microbes. In particular, a 100-MeV proton beam accelerator currently under construction by the Proton Engineering Frontier Project (PEFP) is discussed. The PEFP accelerator will hopefully prompt the utilization of ion beam technology for strain improvement, as well as for use in nuclear physics, medical science, biology, space technology, radiation technology and basic sciences.

Selection and Genetic Relationship of Salt Tolerant Rice Mutants by in vitro Mutagenesis

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Lee, Kyung Jun;Kim, Jin-Baek;Kim, Sang Hoon;Yun, Song Joong;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.307-312
    • /
    • 2010
  • Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt-tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCl; second, selection under in vitro condition with 171 mM NaCl; and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCl treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt-tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

Isolation of a Leucoanthocyanidin Dioxygenase (LDOX) Gene from a Spray-type Chrysanthemum (Dendranthema × grandiflorum) and Its Colored Mutants (스프레이형 국화와 화색변이체로부터 Leucoanthocyanidin dioxygenase (LDOX) 유전자의 분리)

  • Chung, Sung-Jin;Lee, Geung-Joo;Lee, Hye-Jung;Kim, Jin-Baek;Kim, Dong-Sub;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.818-827
    • /
    • 2010
  • A full-length cDNA and genomic DNA of a $leucoanthocyanidin$ $dioxygenase$ ($DgLDOX$) gene was isolated from the petals of chrysanthemum 'Argus', and comparative features of the gene among three flower color mutants derived from a gamma-ray mutagenesis were characterized. The cDNA coding region of the gene was 1068 bp and was translated into 356 amino acids accordingly. The genomic DNA size was 1346 bp for 'Argus', while three mutants revealed ranges of 1363 to 1374 bp. A single intron between two coding exons for the $DgLDOX$ gene was found, of which size was 112 bp for 'Argus', but 128 or 137 bp for three flower color mutants, indicating that a genomic insertion in the intron occurred during the gamma-ray mutagenesis. DNA blot analysis revealed the $DgLDOX$ gene presenting as a single copy in the chrysanthemum genome. The $DgLDOX$ gene was expressed in both 'Argus' of light-pink color and two purple color mutants (AM1 and AM3) but had very weak expression in only white color mutant (AM2). The results demonstrated that variations in the flower color of the mutants might be associated with changes in the amino acid moieties in the coding exons or fragment insertions in the intron of the $DgLDOX$ gene, which potentially resulted in less expression of the gene in the white colored mutant.