Browse > Article

Strain Improvement Based on Ion Beam-Induced Mutagenesis  

Jeong, Hae-Young (Industrial Biotechnology & Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Kye-Ryung (Proton Engineering Frontier Project, Korea Atomic Energy Research Institute (KAERI))
Publication Information
Microbiology and Biotechnology Letters / v.38, no.3, 2010 , pp. 235-243 More about this Journal
Abstract
For decades, traditional mutation breeding technologies using spontaneous mutation, chemicals, or conventional radiation sources have contributed greatly to the improvement of crops and microorganisms of agricultural and industrial importance. However, new mutagens that can generate more diverse mutation spectra with minimal damage to the original organism are always in need. In this regard, ion beam irradiation, including proton-, helium-, and heavier-charged particle irradiation, is considered to be superior to traditional radiation mutagenesis. In particular, it has been suggested that ion beams predominantly produce strand breaks that often lead to mutations, which is not a situation frequently observed in mutagenesis induced by gamma-ray exposure. In this review, we briefly describe the general principles and history of particle accelerators, and then introduce their successful application in ion beam technology for the improvement of crops and microbes. In particular, a 100-MeV proton beam accelerator currently under construction by the Proton Engineering Frontier Project (PEFP) is discussed. The PEFP accelerator will hopefully prompt the utilization of ion beam technology for strain improvement, as well as for use in nuclear physics, medical science, biology, space technology, radiation technology and basic sciences.
Keywords
ion beam; proton beam; mutation breeding; irradiation; mutagenesis;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Yamaguchi, H., S. Nagatomi, T. Morishita, K. Degi, A. Tanaka, N. Shikazono, and Y. Hase. 2003. Mutation induced with ion beam irradiation in rose. Nucl. Instrum. Meth. B 206: 561-564.   DOI   ScienceOn
2 Zengliang, Y., Y. Jianbo, W. Yuejin, C. Beijiu, H. Jianjun, and H. Yuping. 1993. Transferring Gus gene into intact rice cells by low energy ion beam. Nucl. Instrum. Meth. B 80-81: 1328-1331.   DOI   ScienceOn
3 Romero, P. A. and F. H. Arnold. 2009. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10: 866-876.   DOI   ScienceOn
4 Singh, D. R., J. M. Mahajan, and D. Krishnan. 1976. Effect of dimethyl sulfoxide (DMSO) on radiation-induced heteroallelic reversion in diploid yeast. Mutat. Res. 37: 193-200.   DOI
5 Monobe, M., A. Uzawa, M. Hino, K. Ando, and S. Kojima. 2005. Glycine betaine, a beer component, protects radiationinduced injury. J. Radiat. Res. 46: 117-121.   DOI   ScienceOn
6 Yu, B. J., B. H. Sung, M. D. Koob, C. H. Lee, J. H. Lee, W. S. Lee, M. S. Kim, and S. C. Kim. 2002. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat. Biotechnol. 20: 1018-1023.   DOI   ScienceOn
7 Park, H. S., S. H. Nam, J. K. Lee, C. N. Yoon, B. Mannervik, S. J. Benkovic, and H. S. Kim. 2006. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311: 535-538.   DOI
8 Park, J. H., S. Y. Lee, T. Y. Kim, and H. U. Kim. 2008. Application of systems biology for bioprocess development. Trends Biotechnol. 26: 404-412.   DOI   ScienceOn
9 Posfai, G., G. Plunkett, 3rd, T. Feher, D. Frisch, G. M. Keil, K. Umenhoffer, V. Kolisnychenko, B. Stahl, S. S. Sharma, M. de Arruda, V. Burland, S. W. Harcum, and F. R. Blattner. 2006. Emergent properties of reduced-genome Escherichia coli. Science 312: 1044-1046.   DOI
10 Muller, H. J. 1927. Artificial Transmutation of the Gene. Science 66: 84-87.   DOI
11 Hoebee, B., J. Brouwer, P. van de Putte, H. Loman, and J. Retel. 1988. $^{60}Co$ gamma-rays induce predominantly C/G to G/C transversions in double-stranded M13 DNA. Nucleic Acids Res. 16: 8147-8156.   DOI   ScienceOn
12 Friedland, W., P. Jacob, P. Bernhardt, H. G. Paretzke, and M. Dingfelder. 2003. Simulation of DNA damage after proton irradiation. Radiat. Res. 159: 401-410.   DOI   ScienceOn
13 Goodhead, D. T. 1994. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 65: 7-17.   DOI   ScienceOn
14 FAO/IAEA Mutant Variety and Genetic Stock Database. http://mvgs.iaea.org/
15 Buckling, A., R. Craig Maclean, M. A. Brockhurst, and N. Colegrave. 2009. The Beagle in a bottle. Nature 457: 824-829.   DOI   ScienceOn
16 Cairns, J., J. Overbaugh, and S. Miller. 1988. The origin of mutants. Nature 335: 142-145.   DOI   ScienceOn
17 Yu, Z., J. Deng, J. He, Y. Huo, Y. Wu, X. Wang, and G. Lui. 1991. Mutation breeding by ion implantation. Nucl. Instrum. Meth. B 59-60: 705-708.   DOI
18 Yu, Z. 2007. Study on the interaction of low-energy ions with organisms. Surf. Coat. Tech. 201: 8006-8013.   DOI   ScienceOn
19 Zengliang, Y. Introduction to Ion Beam Biotechnology, Springer Science+Buisiness Media Inc., New York, 2006.
20 Tanaka, A., N. Shikazono and Y. Hase. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J. Radiat. Res. 51: 223-233.
21 Tanaka, A., A. Sakamoto, Y. Ishigaki, O. Nikaido, G. Sun, Y. Hase, N. Shikazono, S. Tano, and H. Watanabe. 2002. An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol. 129: 64-71.   DOI   ScienceOn
22 Wang, H. H., F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu, C. R. Forest, and G. M. Church. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894-898.   DOI   ScienceOn
23 Sharan, S. K., L. C. Thomason, S. G. Kuznetsov, and D. L. Court. 2009. Recombineering: a homologous recombinationbased method of genetic engineering. Nat. Protoc. 4: 206-223.   DOI   ScienceOn
24 Shikazono, N., M. Noguchi, K. Fujii, A. Urushibara, and A. Yokoya. 2009. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J. Radiat. Res. 50: 27-36.   DOI   ScienceOn
25 Stadler, L. J. 1928. Mutations in Barley Induced by X-Rays and Radium. Science 68: 186-187.   DOI
26 Stemmer, W. P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391.   DOI   ScienceOn
27 Takimoto, K., K. Uchino, K. Ishizaki, and M. Ikenaga. 1991. Specificity of mutational DNA sequence changes induced by X-rays in the cloned Escherichia coli crp gene. Mutat. Res. 254: 199-206.   DOI   ScienceOn
28 Rosenberg, S. M. 2001. Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2: 504-515.
29 Rust, D. M. 1992. Solar flares: An overview. Adv. Space Res. 12: 289-301.
30 Sapora, O., F. Barone, M. Belli, A. Maggi, M. Quintiliani, and M. A. Tabocchini. 1991. Relationships between cell killing, mutation induction and DNA damage in X-irradiated V79 cells: the influence of oxygen and DMSO. Int. J. Radiat. Biol. 60: 467-482.   DOI   ScienceOn
31 Sargentini, N. J. and K. C. Smith. 1994. DNA sequence analysis of gamma-radiation (anoxic)-induced and spontaneous lacId mutations in Escherichia coli K-12. Mutat. Res. 309: 147-163.   DOI
32 Reed, J. L. and B. O. Palsson. 2003. Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185: 2692-2699.   DOI   ScienceOn
33 Kanbashi, K., X. Wang, J. Komura, T. Ono, and K. Yamamoto. 1997. Frameshifts, base substitutions and minute deletions constitute X-ray-induced mutations in the endogenous tonB gene of Escherichia coli K12. Mutat. Res. 385: 259-267.   DOI   ScienceOn
34 Kaul, B. L. 1970. Studies on radioprotective role of dimethyl sulfoxide in plants. Radiation Botany 10: 69-78.   DOI
35 Knoshaug, E. P. and M. Zhang. 2009. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 153: 13-20.   DOI   ScienceOn
36 Moos, W. S. and S. E. Kim. 1966. Radioprotective effect of topically applied dimethyl sulfoxide on mice. Experientia 22: 814.   DOI   ScienceOn
37 Jung, I. L., K. H. Phyo, K. C. Kim, H. K. Park, and I. G. Kim. 2005. Spontaneous liberation of intracellular polyhydroxybutyrate granules in Escherichia coli. Res. Microbiol. 156: 865-873.   DOI   ScienceOn
38 Jeong, H. and J. Han. 2010. Enhancing the 1-butanol tolerance in Escherichia coli through repetitive proton beam irradiation. J. Kor. Phy. Soc. 56: 2041-2045.   DOI   ScienceOn
39 Hsiao, Y. and R. D. Stewart. 2008. Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes. Phys. Med. Biol. 53: 233-244.   DOI   ScienceOn
40 Gu, S. B., S. C. Li, H. Y. Feng, Y. Wu, and Z. L. Yu. 2008. A novel approach to microbial breeding-low-energy ion implantation. Appl. Microbiol. Biotechnol. 78: 201-209.   DOI   ScienceOn
41 Hada, M. and B. M. Sutherland. 2006. Spectrum of complex DNA damages depends on the incident radiation. Radiat. Res. 165: 223-230.   DOI   ScienceOn
42 Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U S A 97: 6640-6645.   DOI   ScienceOn
43 http://www.dt.co.kr/contents.html?article_no=2008110402019922732016.
44 Hada, M. and A. G. Georgakilas. 2008. Formation of clustered DNA damage after high-LET irradiation: a review. J. Radiat. Res. 49: 203-210.   DOI   ScienceOn
45 Edwards, J. S., R. U. Ibarra, and B. O. Palsson. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125-130.   DOI   ScienceOn
46 Ellis, H. M., D. Yu, T. DiTizio, and D. L. Court. 2001. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. U S A 98: 6742-6746.   DOI   ScienceOn
47 Fong, S. S., A. P. Burgard, C. D. Herring, E. M. Knight, F. R. Blattner, C. D. Maranas, and B. O. Palsson. 2005. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91: 643-648.   DOI   ScienceOn