• Title/Summary/Keyword: gamma aminobutyric acid

Search Result 375, Processing Time 0.029 seconds

Sinomenine, an Alkaloid Derived from Sinomenium acutum Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep in Rodents

  • Yoo, Jae Hyeon;Ha, Tae-Woo;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.586-592
    • /
    • 2017
  • Sinomenium acutum has been long used in the preparations of traditional medicine in Japan, China and Korea for the treatment of various disorders including rheumatism, fever, pulmonary diseases and mood disorders. Recently, it was reported that Sinomenium acutum, has sedative and anxiolytic effects mediated by GABA-ergic systems. These experiments were performed to investigate whether sinomenine (SIN), an alkaloid derived from Sinomenium acutum enhances pentobarbital-induced sleep via ${\gamma}$-aminobutyric acid (GABA)-ergic systems, and modulates sleep architecture in mice. Oral administration of SIN (40 mg/kg) markedly reduced spontaneous locomotor activity, similar to diazepam (a benzodiazepine agonist) in mice. SIN shortened sleep latency, and increased total sleep time in a dose-dependent manner when co-administrated with pentobarbital (42 mg/kg, i.p.). SIN also increased the number of sleeping mice and total sleep time by concomitant administration with the sub-hypnotic dosage of pentobarbital (28 mg/kg, i.p.). SIN reduced the number of sleep-wake cycles, and increased total sleep time and non-rapid eye movement (NREM) sleep. In addition, SIN also increased chloride influx in the primary cultured hypothalamic neuronal cells. Furthermore, protein overexpression of glutamic acid decarboxylase ($GAD_{65/67}$) and $GABA_A$ receptor subunits by western blot were found, being activated by SIN. In conclusion, SIN augments pentobarbital-induced sleeping behaviors through $GABA_A$-ergic systems, and increased NREM sleep. It could be a candidate for the treatment of insomnia.

Role of Spinal Adenosine $A_2$ Receptor in the cardiovascular Regulation in Rats (흰쥐에서 실혈관 조절기전에 대한 척수의 Adenosine $A_2$수용체의 역할)

  • 문삼영;신현진;신인철;고현철;엄애선;박정로;김범수;강주섭
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.325-331
    • /
    • 2000
  • The present study was designed to assess the role of spinal adenosine $A_2$ receptor in the regulation of cardiovascular functions such as mean arterial pressure (MAP) and heart rate (HR) in male Sprague-Dawley rats. Rats (250~300 g) were anesthetized with urethane and paralyzed with d-tubocurarine and artificially ventilated. blood pressure and HR were continuously monitored via a femoral catheter connected to a pressure transducer and a polygraph. Drugs were administered intrathecally using injection cannula through guide cannula which was inserted inthrathecally at lower thoracic level through a puncture of an atlantooccipital mombrane. Intrathecal injection of an adenosine $A_2$ receptor agonist, 5'-(N-cyclopropyl)-carboxamaidoadenosine (CPCA; 1, 2 and 3 nmol, respectively), produced a dose-dependent decrease in MAP and HR. Pretreatment with $N^{G}$-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor or 10 nmol of MDL-12,330, an adenylate cyclase inhibitor blocked significantly the depressor and bradycardic effect of 2 nmol of CPCA. But, Pretreatment with 3 nmol of bicuculline, gamma-aminobutyric acid A (GAB $A_{A}$) receptor antagonist, or 50 nmol of 5-aminovaleric acid, GAB $A_{B}$ receptor antagonist did not inhibit the depressor and bradycardic effect of 2 nmol of CPCA. These results indicate that adenosine $A_2$ receptor in the spinal cord plays an inhibitory role in the regulation of cardiovascular function and that the depressor and bradycardic action of adonosine $A_2$ receptor are mediated via the synthesis of nitric oxide and the activation of adenylate cyclase in the spinal cord of rats.s.s.s.

  • PDF

Alterations of Spontaneous Sleep Architecture and Cortical Electroencephalogram Power Spectra by Red Ginseng Extract via GABAAergic Systems

  • Yang, Shu-Long;Nam, Sang-Yoon;Han, Jin-Yi;Kim, Jun-Cheol;Lee, Ki-Nam;Hong, Jin-Tae;Oh, Ki-Wan;Eun, Jae-Soon
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2010
  • This study was undertaken to discover the effects and possible mechanisms of the effect of red ginseng extract (RGE) on spontaneous sleep. The effects of a low dose (10 mg/kg) and a high dose (200 mg/kg) of RGE were compared in rats. After recovery from a surgical operation enabling electroencephalograms recordings, rats were administered RGE orally. RGE was administered orally for 1 day or once per day for 5 days in either 10 or 200 mg/kg doses. Polygraphic signs were recorded for 12 h after oral administration of RGE. Both treatment with a large dose (200 mg/kg) of RGE for one day and treatment with either a large or a small dose for 5 days reduced the number of sleep.wake cycles. Daily treatment with RGE (either 10 or 200 mg/kg) for 5 days augmented NREM and total sleep, but reduced wakefulness. Delta wave activity recorded during non-REM (NREM) sleep and REM sleep was increased after one treatment with RGE (either 10 or 200 mg/kg). Delta wave activity during NREM was enhanced after daily treatment with RGE (either 10 or 200 mg/kg) for 5 days. Both alpha and beta subunits of the $\gamma$-aminobutyric acid $(GABA)_A$ receptor were significantly over-expressed in the hypothalamus of the RGE-treated groups. Moreover, the expression of glutamic acid decarboxylase was also increased in the hypothalamus. These results demonstrate that RGE may regulate spontaneous sleep via $GABA_A$ergic systems.

Repeated Administration of Korea Red Ginseng Extract Increases Non-Rapid Eye Movement Sleep via GABAAergic Systems

  • Lee, Chung-Il;Kim, Chung-Soo;Han, Jin-Yi;Oh, Eun-Hye;Oh, Ki-Wan;Eun, Jae-Soon
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.403-410
    • /
    • 2012
  • The current inquiry was conducted to assess the change in sleep architecture after long periods of administration to determine whether ginseng can be used in the therapy of sleeplessness. Following post-surgical recovery, red ginseng extract (RGE, 200 mg/kg) was orally administrated to rats for 9 d. Data were gathered on the 1st, 5th, and 9th day, and an electroencephalogram was recorded 24 h after RGE administration. Polygraphic signs of unobstructed sleep-wake activities were simultaneously recorded with sleep-wake recording electrodes from 11:00 a.m. to 5:00 p.m. for 6 h. Rodents were generally tamed to freely moving polygraphic recording conditions. Although the 1st and 5th day of RGE treatment showed no effect on power densities in nonrapid eye movement (NREM) and rapid eye movement (REM) sleep, the 9th day of RGE administration showed augmented ${\alpha}$-wave (8.0 to 13.0 Hz) power densities in NREM and REM sleep. RGE increased total sleep and NREM sleep. The total percentage of wakefulness was only decreased on the 9th day, and the number of sleep-wake cycles was reduced after the repeated administration of RGE. Thus, the repeated administration of RGE increased NREM sleep in rats. The ${\alpha}$-wave activities in the cortical electroencephalograms were increased in sleep architecture by RGE. Moreover, the levels of both ${\alpha}$- and ${\beta}$-subunits of the ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor were reduced in the hypothalamus of the RGE-treated groups. The level of glutamic acid decarboxylase was over-expressed in the hypothalamus. These results demonstrate that RGE increases NREM sleep via $GABA_A$ergic systems.

Korean Red Ginseng Extract Activates Non-NMDA Glutamate and GABAA Receptors on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Park, Seon-Ah;Park, Soo-Joung;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Korean red ginseng (KRG) is a valuable and important traditional medicine in East Asian countries and is currently used extensively for botanical products in the world. KRG has both stimulatory and inhibitory effects on the central nervous system (CNS) suggesting its complicated action mechanisms. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Some studies reported that KRG has antinociceptive effects, but there are few reports of the functional studies of KRG on the SG neurons of the Vc. In this study, a whole cell patch clamp study was performed to examine the action mechanism of a KRG extract on the SG neurons of the Vc from juvenile mice. KRG induced short-lived and repeatable inward currents on all the SG neurons tested in the high chloride pipette solution. The KRG-induced inward currents were concentration dependent and were maintained in the presence of tetrodotoxin, a voltage gated $Na^+$ channel blocker. The KRG-induced inward currents were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and/or picrotoxin, a gamma-aminobutyric acid $(GABA)_A$ receptor antagonist. However, the inward currents were not suppressed by d,l-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. These results show that KRG has excitatory effects on the SG neurons of the Vc via the activation of non-NMDA glutamate receptor as well as an inhibitory effect by activation of the $GABA_A$ receptor, indicating the KRG has both stimulatory and inhibitory effects on the CNS. In addition, KRG may be a potential target for modulating orofacial pain processing.

The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems

  • Dehkordi, Faraz Mahdian;Kaboutari, Jahangir;Zendehdel, Morteza;Javdani, Moosa
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Background: Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. Methods: On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. Results: Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. Conclusions: It seems that antinocicptive effects of artemisinin are mediated by $GABA_A$ receptors.

Optimization of Mixing Ratio of Mulberry Leaf, Mulberry Fruit, and Silkworm for Amelioration of Metabolic Syndrome (대사증후군 개선을 위한 뽕잎, 오디, 누에 분말의 혼합 비율 최적화)

  • Kim, Min-Ju;Kim, Hyun-Sook;Kim, Ae-Jung
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.83-95
    • /
    • 2018
  • Objectives: The aim of this study was optimized mixing ratio of mulberry leaf, mulberry fruit, and silkworm for amelioration of the metabolic syndrome by using response surface method (RSM). Methods: Antioxidant, antidiabetic and antihypertensive activities of fifteen mixed powder of mulberry leaf, mulberry fruit, and silkworm by RSM were measured as indicators of metabolic syndrome. Results: The optimal mixing ratio of mulberry leaves, mulberry fruits, and silkworm with the greatest antioxidant, antidiabetic and antihypertensive activities was as follows: 2.5890 of mulberry leaf (A), 0.1222 of mulberry fruit (B), 2.9999 of silkworm (C). At this time, it was predicted that the total polyphenol content was estimated to be 185.51 tannic acid equivalent mg/g, 1, 1-diphenyl-2-picrylhy drazyl radical scavenging activity 84.77%, 1-deoxynojirimycin content 415.66 mg/100 g, ${\alpha}-glucosidase$ inhibitory activity 64.31%, ${\gamma}-aminobutyric$ acid content 267.77 mg/100 g, potassium content 1,899.11 mg/100 g, and angiotensin-converting-enzyme inhibitory activity was estimated to be 73.78%. Conclusions: It was concluded that the significant effect of the mulberry leaf, mulberry fruit, and silkworm on the metabolic syndrome-related biological activity indices (antioxidant activity, antidiabetic activity and antihypertensive activity) was as follows: 2.5890 of mulberry leaf (A), 0.1222 of mulberry fruit (B), 2.9999 of silkworm (C).

Analysis of Nutritional Components, Volatile Properties, and Sensory Attributes of Cynanchi wilfordii Radix: Characterization Study (백하수오의 식품학적 영양 성분 및 휘발성 향기 성분 분석을 통한 관능적 특성 검토)

  • Lim, Ho-Jeong;Kim, Jae-Kyeom;Cho, Kye Man;Joo, Ok Soo;Nam, Sang Hae;Lee, Shin-Woo;Kim, Hyun Joon;Shin, Eui-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.564-572
    • /
    • 2015
  • Nutritional compositions, volatile compounds, and sensory attributes of Cynanchi wilfordii Radix were analyzed in order to examine its practical utilization as a food resource. In the proximate analysis, protein and lipid contents were shown to be 14.6 and 5.0 mg/100 g, respectively, in C. wilfordii Radix. Potassium was the most predominant mineral (809 mg/100 g), as determined by inductively coupled plasma-optical emission spectrometry in parallel with microwave acid digestion. Total phenolic content was found to be 410 mg/100 g. Further, arginine and linoleic acid were the most abundant amino acid and fatty acid of C. wilfordii Radix, respectively. To examine its functional properties, classical 2,2-diphenyl-1-picrylhydrazyl (DPPH) analysis was performed. As a result, the concentration of C. wilfordii Radix required to scavenge 50% of DPPH radicals was 1.16 mg of dried material. Lastly, in olfactory and sensory tests, ${\beta}$-eudesmol (woody odor) was the major flavor compound responsible for the bitter taste and sensory attributes of C. wilfordii Radix. Taken altogether, the above results provide important preliminary results for utilization of C. wilfordii Radix as a food resource.

Production of fermented Omija (Schizandra chinensis) beverage fortified with high content of gamma-amino butyric acid using Lactobacillus plantarum (오미자(Schizandra chinensis) 열매 추출물의 Lactobacillus plantarum 젖산발효를 통한 고농도 GABA 함유 발효음료 제조)

  • Lee, Hyo-Seon;Kwon, Soon-Young;Lee, Syng-Ook;Lee, Sam-Pin
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.326-334
    • /
    • 2016
  • Omija (Schizandra chinensis) extract (OE) was fermented by using Lactobacillus plantarum EJ2014 to produce a beverage fortified with gamma-aminobutyric acid (GABA). After 2 days of fermentation in the presence of 2% monosodium glutamate (MSG) and 0.5% yeast extract (YE), the four-fold-diluted OE showed a higher viable cell count ($2.2{\times}10^9CFU/mL$) and lower acidity (1.2%) than that of the unfermented OE. In particular, addition of MSG as a precursor resulted in a small increase in the initial pH. MSG (2%) was completely converted to GABA (0.92%) during lactic acid bacteria fermentation for 3 days. Furthermore, the acidity of the fermented OE decreased from 1.74% to 0.56%. In addition, the original red color of the OE disappeared during LAB fermentation. However, when the fermented OE was mixed with 50% of the original OE, the original red color was recovered, with 19.56 and 13.92 for Hunter L and a values, respectively. The mixture of 50% original OE and 50% fermented OE showed the highest sensory score including the highest overall preference. In conclusion, the OE fortified with GABA and probiotics was produced by fermentation with a static culture, L. plantarum EJ2014.

Chemical Composition, Functional Constituents, and Antioxidant Activities of Berry Fruits Produced in Korea (국내 재배 베리류의 화학 조성 및 기능성 성분과 항산화 활성)

  • Lee, Yongcheol;Lee, Jib-Ho;Kim, Sung-Dan;Chang, Min-Su;Jo, In-Soon;Kim, Si-Jeong;Hwang, Keum Taek;Jo, Han-Bin;Kim, Jung-Hun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1295-1303
    • /
    • 2015
  • Berry fruits are rich in phytochemicals, including polyphenols, anthocyanins, phenolic acids, and organic acids, which are known to have beneficial effects on health. The aim of this study was to investigate chemical composition, functional constituents, and antioxidant activities of mulberry, black raspberry, raspberry, and blueberry cultivated in Korea. Acidity of the four berries ranged from 0.26% to 1.10%, and pH ranged from 3.3 to 5.2. Total mineral contents of the four berries ranged from 92.9 to 256.0 mg/100 g. Among the berries, mulberry contained the most abundant total free sugars, and glucose and fructose were the major sugars in the berries. Mulberry contained more than three times as much ${\gamma}-aminobutyric$ acid as the content of the other berries. Blueberry contained more free phenolic acid than the other berries. Especially, chlorogenic acids were the major free phenolic acids in blueberry. Black raspberry had the highest amount of polyphenols, anthocyanins, and flavonoids among the berries and showed the highest antioxidant activity.