• Title/Summary/Keyword: galvanostatic reduction

Search Result 18, Processing Time 0.022 seconds

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

Evaluation of Durability for Al Alloy with Anodizing Condition (알루미늄 합금의 양극산화 조건에 따른 내구성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

Basic study and patent analysis of electrochemical denitrification from industrial wastewater (산업폐수(産業廢水)로부터 전해처리(電解處理)에 의한 탈질(脫窒) 연구(硏究) 및 특허(特許) 분석(分析))

  • Lee, Churl-Kyoung
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.52-60
    • /
    • 2007
  • Denitrification from aqueous solution was investigated through patent analysis and electrochemical denitrification experiment. Among several candidates, biological treatment and oxidation/reduction method are mainly discussed. Recently, patent pending concerning to electrochemical treatment is increasing. Based on basic electrochemical study, total nitrogen was removed up 47% by 1-hour galvanostatic electrolysis with Fe cathode and Pt anode. More applicable technique to industry could be mentioned combination of two or more technologies suitable to waste water characteristics. In the case of small and concentrate effluent, combination of chemical and electrochemical treatment would be recommendable because nitrate could be easily converted to nitrite by chemical treatment, and in that case denitrification by electrolysis becomes more efficient and metal ions from chemical treatment can be recovered during electrolysis.

Electrochemical Behavior of a Nickel Hydroxide Particle for Ni-MH Battery by Microelectrode (마이크로전극에 의한 니켈수소전지용 수산화니켈 입자의 전기화학적 거동)

  • Kim, Ho-Sung;Oh, Ik-Hyun;Lee, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.145-149
    • /
    • 2007
  • Electrochemical studies were performed for a single particle of nickel hydroxide for the cathode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and electrochemical experiments were performed. As a result of cyclic voltammetry, the oxidation/reduction and oxygen evolution reaction (OER) are clearly separated for a single particle. The total cathodic charge (Qred) is practically constant for the scan rate investigated, indicating that the whole particle has reacted. The total anodic charge(Qox) was larger than that of reduction reaction, and the magnitude of oxygen evolution taking place as a side reaction was enhanced at lower scan rates. As a result of galvanostatic charge and discharge measurement, the discharge capacity of single particle was found to be 250 mAh/g, value being very close to the theoretical capacity (289 mAh/g). The apparent proton diffusion coefficient(Dapp) using potential step method inside the nickel hydroxide was found to range within $3{\sim}4{\times}10^{-9}\;cm^2/s$.

Hydrothermal Synthesis of Li-Mn Spinel Nanoparticle from K-Birnessite and Its Electrochemical Characteristics (K-Birnessite를 이용한 Li-Mn Spinel 나노입자 합성 및 전기화학적 특성 평가)

  • Kim, Jun-Il;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Sun, Yang-Kook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.590-592
    • /
    • 2010
  • Li-Mn spinel ($LiMn_2O_4$) is prepared by a hydrothermal process with K-Birnessite ($KMnO_4{\cdot}yH_2O$) as a precursor. The K-Birnessite obtained via a hydrothermal process with potassium permanganate [$KMnO_4$] and urea [$CO(NH_2)_2$] as starting materials are converted to Li-Mn spinel nanoparticles reacting with LiOH. The molar ratio of LiOH/K-Birnessite is adjusted in order to find the effect of the ratio on the structural, morphological and electrochemical performances of the Li-Mn spinel. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetry (TG) are used to investigate the crystal structure and morphology of the samples. Galvanostatic charge and discharge are carried out to measure the capacity and rate capability of the Li-Mn spinel. The capacity shows a maximum value of $117\;mAhg^{-1}$ when the molar ratio of LiOH/K-Birnessite is 0.8 and decreases with the increase of the ratio. However the rate capability is improved with the increase of the ratio due to the reduction of the particle size.

Computational Analysis for a Molten-salt Electrowinner with Liquid Cadmium Cathode (액체 카드뮴 음극을 사용한 용융염 전해제련로 전산해석)

  • Kim, Kwang-Rag;Jung, Young-Joo;Paek, Seung-Woo;Kim, Ji-Yong;Kwon, Sang-Woon;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Kim, Jung-Gug;Ahn, Do-Hee;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In the present work, an electrowinning process in the LiCl-KCl/Cd system is considered to model and analyze the electrotransport of the actinide and rare-earth elements. A simple dynamic modeling of this process was performed by taking into account the material balances and diffusion-controlled electrochemical reactions in a diffusion boundary layer at an electrode interface between the molten salt electrolyte and liquid cadmium cathode. The proposed modeling approach was based on the half-cell reduction reactions of metal chloride occurring on the cathode. This model demonstrated a capability for the prediction of the concentration behaviors, a faradic current of each element and an electrochemical potential as function of the time up to the corresponding electrotransport satisfying a given applied current based on a galvanostatic electrolysis. The results of selected case studies including five elements (U, Pu, Am, La, Nd) system are shown, and a preliminary simulation is carried out to show how the model can be used to understand the electrochemical characteristics and provide better information for developing an advanced electrowinner.

Electronic Structure of Iron and Molybdenum in $Li_2FeMoO_4Cl$ and Its Crystal Symmetry ($Li_2FeMoO_4Cl$의 결정구조와 Fe 및 Mo의 전자구조 연구)

  • Choy, Jin-Ho;Park, Nam-Gyu;Chang, Soon-Ho;Park, Hyung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.6
    • /
    • pp.446-452
    • /
    • 1995
  • Lithium intercalates, $Li_xFeMoO_4Cl$ ($1{\leq}X{\leq}2$) prepared by electrochemical lithiation of $FeMoO_4Cl$ crystallizes in monoclinic structure for all x values as revealed by x-ray diffraction and galvanostatic discharge experiments. According to the x-ray photoelectron spectroscopic study, Fe(III) is at first reduced to Fe(II) upon lithium intercalation with the x domain of $0{\leq}X{\leq}1$, where the crystal symmetry is changed from tetragonal to monoclinic. On the other hand, Mo(VI) is reduced to lower valent state upon further lithium intercalation ($1{\leq}X{\leq}2$), where no crystal symmetry transformation and reduction of Fe(II) to lower valent state are observed. The Mo 3d spectrum for $Li_2FeMoO_4Cl$ appears as a complex shape, but can be deconvoluted into the three sets of the doublet on the basis of Gaussian function, those which correspond to Mo(VI), Mo(V) and Mo(IV) states, respectively. The mixed valent states of molybdenum after further lithiation may be due to a competitive reaction between the formation of Mo(V) and its disproportionation to Mo(IV) and Mo(VI).

  • PDF

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.