Computational Analysis for a Molten-salt Electrowinner with Liquid Cadmium Cathode

액체 카드뮴 음극을 사용한 용융염 전해제련로 전산해석

  • Received : 2009.12.16
  • Accepted : 2010.02.08
  • Published : 2010.03.30

Abstract

In the present work, an electrowinning process in the LiCl-KCl/Cd system is considered to model and analyze the electrotransport of the actinide and rare-earth elements. A simple dynamic modeling of this process was performed by taking into account the material balances and diffusion-controlled electrochemical reactions in a diffusion boundary layer at an electrode interface between the molten salt electrolyte and liquid cadmium cathode. The proposed modeling approach was based on the half-cell reduction reactions of metal chloride occurring on the cathode. This model demonstrated a capability for the prediction of the concentration behaviors, a faradic current of each element and an electrochemical potential as function of the time up to the corresponding electrotransport satisfying a given applied current based on a galvanostatic electrolysis. The results of selected case studies including five elements (U, Pu, Am, La, Nd) system are shown, and a preliminary simulation is carried out to show how the model can be used to understand the electrochemical characteristics and provide better information for developing an advanced electrowinner.

본 연구에서는 LiCl-KCl/Cd계의 전해제련 공정을 대상으로 악티늄 및 희토류족 원소들의 전해이동을 모델링하고 해석하였다. 이 공정에서 용융염 전해질과 액체 카드뮴 음극간의 확산 경계층 계면에서 확산제한 전기화학반응 및 물질수지를 고려한 단순화된 동적모델을 수립하였다. 제안된 모델링 접근방법은 음극에서 일어나는 금속염의 반쪽 전지 환원반응에 기초를 둔 모델이다. 이 모델을 사용하여 정전류 전해공정에서 주어진 인가전류 조건을 만족하는 시간까지의 전해이동과 연계된 농도거동, 각 원소의 패러데이 전류 그리고 시간 함수의 전기화학 전위를 예측하는 가능성을 보여주었다. 선택된 5성분 원소(U, Pu, Am, La, Nd)계의 결과를 예비 모사하여 전산모델이 전기화학적 특성을 이해하고 개선된 전해제련로를 개발하기 위한 정보를 제공할 수 있는가를 평가하였다.

Keywords

References

  1. H. P. Nawada and K. Fukuda, "Role of Pyrochemical Processes in Advanced Fuel Cycles," Journal of Physics and Chemistry of Solids, 66, pp. 647-651 (2005). https://doi.org/10.1016/j.jpcs.2004.07.022
  2. V. Bragin, J. Carlson, R. Leslie, R. Schenkel, J. Magill and K. Mayer, Proliferation-Resistance and Safeguardability of Innovative Nuclear Fuel Cycles, lAEA Report, IAEA-SM-367/15/07(2007)
  3. 유재형, 이병직, 이한수, 김응호 "고온전해분리 기술의 개요 및 기존 핵연료주기 대체 기술로서의 적합성 검토," 방사성폐기물학회지, 5(4), pp. 283-295 (2007).
  4. 윤달성, 백승우, 김시형, 김광락, 안도희, "파이로프로세스 전해제련장치의 열전달해석," 방사성폐기물학회지, 7(4), pp. 213-218 (2009).
  5. M. Iizuka, T Koyama, N. Kondo, R. Fujita and H. Tanaka, "Actinides Recovery from Molten Salt/Liquid Metal System by Electrochemical Methods," Journal of Nuclear Materials, 247, pp. 183-190 (1997). https://doi.org/10.1016/S0022-3115(97)00096-2
  6. T. Kobayashi, and M. Tokiwai, "Development of TRAIL, a Simulation Code for the Molten Salt Electrorefming of Spent Nuclear Fuel," Journal of Alloys and Compounds, 197, pp. 7-16 (1993). https://doi.org/10.1016/0925-8388(93)90610-Y
  7. T. Kobayashi, R. Fttiita, M. Fujie and T. Koyama, "Polarization Effects in the Molten Salt Electrorefining of spent Nuclear Fuel," Journal of Nuclear Science and Technology, 32(7), pp. 653-663 (1995). https://doi.org/10.3327/jnst.32.653
  8. T. Kobayashi, R. Fusita, H. Nakamura and T. Koyama, "Evaluation of Cadmium Pool Potential in a Electrorefmer with Ceramic Partition for Spent metallic Fuel," Journal of Nuclear Science and Technology, 34(1). pp. 50-57 (1997). https://doi.org/10.3327/jnst.34.50
  9. A. J. Bard and L. R. Faulkner. Electrochemical Methods - Fundamentals and Applications, 2nd ed., pp. 87-136. John Wiley & Sons Inc., New York (2001).
  10. D. J. Pickett, "Electrochemical Reactor Design," 2nd ed., pp. 48-84. Elsevier Scientific Publishing Co., New York (1979).
  11. J. S. Newman, "Electrochemical Systems." 2nd ed., pp. 186-211, Prentice Hall, Englewood Cliffs. New Jersey (1991).
  12. S. Phongikaroon and S. X. Li, "Analysis of the Mk-IV Electrorefiner: Phase I - Simplified Solving Process for Determining Parameters at Fuel Basket/Salt Inteface," 2006 International Pyroprocessing Research Conference, Idaho State University Center for Higher Education, Idaho Falls, Idaho, August 8-10, 2006, USA.
  13. H. Hayashi, M. Akabori. K. Minato, Kazuo, K. Mizuguchi, A. Kawabe and R. Fujita, "Development of the Simulation Technology for the Pyrochemical Process of Spent Nuclear Fuels," Electrochemistry, 75(7), pp. 528-534 (2007). https://doi.org/10.5796/electrochemistry.75.528
  14. H. A. Laitinen and R. A. Osteryoung, "Electrochemistry in Molten Salts," in: Fused Salts, B. R. Sundheim eds., pp. 255-300, McGraw-Hill. New York (1964).
  15. T. Koyama, K. Uozumi, M. lizuka, Y. Sakamura and K. Kinoshita. Pyrometallurgy Data Book, Komae Research Laboratory Report No. T93033(1994).
  16. P. Masset. R. J. M. Konings, R. Malmbeck, J. Serp, and J. P. Glatz, "Thermochemical Properties of Lanthanides (Ln=La, Nd) and Actinides (An=U, Np, Pu, Am) in the Molten LiCl-KCl Eutectic," Journal of Nuclear Materials, 344, pp. 173-179(2005). https://doi.org/10.1016/j.jnucmat.2005.04.038
  17. 강영호, 유재형, 우문식, 황성찬, 악티나이드 금속의 건식 분리기, 한국원자력연구원 보고서, KAERI/AR-540/99 (1999).
  18. 김정국, 황성찬, 박성빈, 강영호, 장연우, 박기민, 이한수, "사용후핵연료 전해정련공정의 물질수지," 한국방사성폐기물학회 학술논문요약집, pp. 302-303, 2009.11.12-13, 제주휘닉스아일랜드.