Browse > Article

Computational Analysis for a Molten-salt Electrowinner with Liquid Cadmium Cathode  

Kim, Kwang-Rag (Korea Atomic Energy Research Institute)
Jung, Young-Joo (Korea Atomic Energy Research Institute)
Paek, Seung-Woo (Korea Atomic Energy Research Institute)
Kim, Ji-Yong (University of Science and Technology)
Kwon, Sang-Woon (Korea Atomic Energy Research Institute)
Yoon, Dal-Seong (University of Science and Technology)
Kim, Si-Hyung (Korea Atomic Energy Research Institute)
Shim, Jun-Bo (Korea Atomic Energy Research Institute)
Kim, Jung-Gug (Korea Atomic Energy Research Institute)
Ahn, Do-Hee (Korea Atomic Energy Research Institute)
Lee, Han-Soo (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.8, no.1, 2010 , pp. 1-7 More about this Journal
Abstract
In the present work, an electrowinning process in the LiCl-KCl/Cd system is considered to model and analyze the electrotransport of the actinide and rare-earth elements. A simple dynamic modeling of this process was performed by taking into account the material balances and diffusion-controlled electrochemical reactions in a diffusion boundary layer at an electrode interface between the molten salt electrolyte and liquid cadmium cathode. The proposed modeling approach was based on the half-cell reduction reactions of metal chloride occurring on the cathode. This model demonstrated a capability for the prediction of the concentration behaviors, a faradic current of each element and an electrochemical potential as function of the time up to the corresponding electrotransport satisfying a given applied current based on a galvanostatic electrolysis. The results of selected case studies including five elements (U, Pu, Am, La, Nd) system are shown, and a preliminary simulation is carried out to show how the model can be used to understand the electrochemical characteristics and provide better information for developing an advanced electrowinner.
Keywords
Electrowinner; LiCl-KCl; Liquid cadmium cathode; Diffusion-controlled electrotransport; Actinide elements; Rare-earth elements;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Kobayashi, and M. Tokiwai, "Development of TRAIL, a Simulation Code for the Molten Salt Electrorefming of Spent Nuclear Fuel," Journal of Alloys and Compounds, 197, pp. 7-16 (1993).   DOI   ScienceOn
2 T. Kobayashi, R. Fttiita, M. Fujie and T. Koyama, "Polarization Effects in the Molten Salt Electrorefining of spent Nuclear Fuel," Journal of Nuclear Science and Technology, 32(7), pp. 653-663 (1995).   DOI   ScienceOn
3 T. Kobayashi, R. Fusita, H. Nakamura and T. Koyama, "Evaluation of Cadmium Pool Potential in a Electrorefmer with Ceramic Partition for Spent metallic Fuel," Journal of Nuclear Science and Technology, 34(1). pp. 50-57 (1997).   DOI   ScienceOn
4 유재형, 이병직, 이한수, 김응호 "고온전해분리 기술의 개요 및 기존 핵연료주기 대체 기술로서의 적합성 검토," 방사성폐기물학회지, 5(4), pp. 283-295 (2007).   과학기술학회마을
5 H. A. Laitinen and R. A. Osteryoung, "Electrochemistry in Molten Salts," in: Fused Salts, B. R. Sundheim eds., pp. 255-300, McGraw-Hill. New York (1964).
6 A. J. Bard and L. R. Faulkner. Electrochemical Methods - Fundamentals and Applications, 2nd ed., pp. 87-136. John Wiley & Sons Inc., New York (2001).
7 H. P. Nawada and K. Fukuda, "Role of Pyrochemical Processes in Advanced Fuel Cycles," Journal of Physics and Chemistry of Solids, 66, pp. 647-651 (2005).   DOI   ScienceOn
8 J. S. Newman, "Electrochemical Systems." 2nd ed., pp. 186-211, Prentice Hall, Englewood Cliffs. New Jersey (1991).
9 S. Phongikaroon and S. X. Li, "Analysis of the Mk-IV Electrorefiner: Phase I - Simplified Solving Process for Determining Parameters at Fuel Basket/Salt Inteface," 2006 International Pyroprocessing Research Conference, Idaho State University Center for Higher Education, Idaho Falls, Idaho, August 8-10, 2006, USA.
10 H. Hayashi, M. Akabori. K. Minato, Kazuo, K. Mizuguchi, A. Kawabe and R. Fujita, "Development of the Simulation Technology for the Pyrochemical Process of Spent Nuclear Fuels," Electrochemistry, 75(7), pp. 528-534 (2007).   DOI   ScienceOn
11 T. Koyama, K. Uozumi, M. lizuka, Y. Sakamura and K. Kinoshita. Pyrometallurgy Data Book, Komae Research Laboratory Report No. T93033(1994).
12 D. J. Pickett, "Electrochemical Reactor Design," 2nd ed., pp. 48-84. Elsevier Scientific Publishing Co., New York (1979).
13 P. Masset. R. J. M. Konings, R. Malmbeck, J. Serp, and J. P. Glatz, "Thermochemical Properties of Lanthanides (Ln=La, Nd) and Actinides (An=U, Np, Pu, Am) in the Molten LiCl-KCl Eutectic," Journal of Nuclear Materials, 344, pp. 173-179(2005).   DOI   ScienceOn
14 강영호, 유재형, 우문식, 황성찬, 악티나이드 금속의 건식 분리기, 한국원자력연구원 보고서, KAERI/AR-540/99 (1999).
15 김정국, 황성찬, 박성빈, 강영호, 장연우, 박기민, 이한수, "사용후핵연료 전해정련공정의 물질수지," 한국방사성폐기물학회 학술논문요약집, pp. 302-303, 2009.11.12-13, 제주휘닉스아일랜드.
16 V. Bragin, J. Carlson, R. Leslie, R. Schenkel, J. Magill and K. Mayer, Proliferation-Resistance and Safeguardability of Innovative Nuclear Fuel Cycles, lAEA Report, IAEA-SM-367/15/07(2007)
17 윤달성, 백승우, 김시형, 김광락, 안도희, "파이로프로세스 전해제련장치의 열전달해석," 방사성폐기물학회지, 7(4), pp. 213-218 (2009).   과학기술학회마을
18 M. Iizuka, T Koyama, N. Kondo, R. Fujita and H. Tanaka, "Actinides Recovery from Molten Salt/Liquid Metal System by Electrochemical Methods," Journal of Nuclear Materials, 247, pp. 183-190 (1997).   DOI   ScienceOn