• Title/Summary/Keyword: gain quantization

Search Result 50, Processing Time 0.032 seconds

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

  • Son, Seung-Woo;Lee, Sang-Hun;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1853-1857
    • /
    • 2005
  • In most of motor-driven motion control systems, an encoder is used to measure a position of the motor and the velocity information is obtained by measuring the position increment over a sampling period. The quantization effect due to limited resolution of the encoder induces some measurement errors, and consequently causes deterioration of the motion performance especially in low velocity. In this paper, we propose a gain-scheduled acceleration estimator which works in wider velocity range than the original acceleration estimator. We investigate and analyze characteristics of the velocity measurement mechanism which takes into account the quantization effect of the encoder. Next, we introduce the acceleration estimator and propose a gain-scheduled acceleration estimator. The bandwidth of the gain-scheduled acceleration estimator is automatically adjusted by the velocity command. Finally, its performance is evaluated by simulation and experiment, and the results are compared with those of a conventional method and the original acceleration estimator.

  • PDF

Cluster-Based Quantization and Estimation for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.215-221
    • /
    • 2016
  • We consider a design of a combined quantizer and estimator for distributed systems wherein each node quantizes its measurement without any communication among the nodes and transmits it to a fusion node for estimation. Noting that the quantization partitions minimizing the estimation error are not independently encoded at nodes, we focus on the parameter regions created by the partitions and propose a cluster-based quantization algorithm that iteratively finds a given number of clusters of parameter regions with each region being closer to the corresponding codeword than to the other codewords. We introduce a new metric to determine the distance between codewords and parameter regions. We also discuss that the fusion node can perform an efficient estimation by finding the intersection of the clusters sent from the nodes. We demonstrate through experiments that the proposed design achieves a significant performance gain with a low complexity as compared to the previous designs.

Under the fading channel environment, performance evaluation of AF CR loop Due to the quantization effect (페이딩 채널 환경하에서의 양자화 특성에 의한 AF CR loop의 성능평가)

  • 송재철;이경하;김선형;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.737-746
    • /
    • 1996
  • In this paper, we present simulation result of quantization effects about a new Angular From Carrier Recovery Loop(AF CR loop) for PSK modulation technique. AF CR loop includes detected angle symbol and Multi Level hardimiter. In general, detected angle is used in dtermining symbol. Because detected angle is used to make an error signal of phase detector output, hardware implementation of AF CR loop is simpler than that of other loops. Before hardware implementation of AF CR loop, the result due to quantization effect should be investigated. In order to confirm quntization effect of AF CR loop, we evaluate performance of this loop by Monte-Carlosimulation method. Under both in the AWGN and Jake's fading noise channel environments, we confirmed the characteristics of AF CR loop in terms of RMS jitter due to quntization effect. Differential APSK modulation schemeis used in this paper. Especially, Jake's fading channel is used as a channel model and also AGC(Automatic Gain Control) is used in the overall process of performance evaluation. We obtained the resonable result of quantization effect about AF CR loop. With the result of performanceevaluation based on quantization effects, we can expect to operate AF CRloop under the fading channel environments reasonably well.

  • PDF

Entropy-Coded Lattice Vector Quantization Based on the Sample-Adaptive Product Quantizer and its Performance for the Memoryless Gaussian Source (표본 적응 프로덕트 양자기에 기초한 격자 벡터 양자화의 엔트로피 부호화와 무기억성 가우시언 분포에 대한 성능 분석)

  • Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.67-75
    • /
    • 2012
  • Optimal quantizers in conducting the entropy-constrained quantization for high bit rates have the lattice structure. The quantization process is simple due to the regular structure, and various quantization algorithms are proposed depending on the lattice. Such a lattice vector quantizer (VQ) can be implemented by using the sample-adaptive product quantizer (SAPQ) and its output can also be easily entropy encoded. In this paper, the entropy encoding scheme for the lattice VQ is proposed based on SAPQ, and the performance of the proposed lattice VQ, which is based on SAPQ with the entropy coder, is asymptotically compared as the rate increases. It is shown by experiment that the gain for the memoryless Gaussian source also approaches the theoretic gain for the uniform density case.

Optimum design of two-dimensional subband filter banks using vector quantizer (벡터양자기를 사용한 최적의 이차원 부대역필터의 구현)

  • Jonghong Shin;Innho Jee
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.667-670
    • /
    • 2000
  • This paper provides a heuristic theory for modeling and analysis of vector quantization effects in 2-dimensional subband filter banks. This model is used as the basis for optimal filter bank design. The scalar non-linear gain-plus-additive noise quantization model can be used to represent each vector quantizer in 2-band subband codec. The validity and accuracy and of this analytic model is confirmed by comparing the calculated model quantization errors with actual simulation of the optimum LBG vector quantizer. Numerical design examples for the optimum separable paraunitary filter banks are suggested in this paper.

  • PDF

New Adaptive Compandor for LTE Signal Compression Based on Spline Approximations

  • Velimirovic, Lazar Zoran;Maric, Svetislav
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.463-468
    • /
    • 2016
  • With the constant increase in network traffic, wireless operators are finding it more challenging to keep network hardware costs to a minimum. At the same time, the energy cost associated with operating a network has increased proportionally. Therefore, the search for higher network capacity is simultaneously accompanied by the search for a cost-efficient network deployment. In this paper, we show that a saving in transmitted signal energy can be achieved at the signal design level by deploying very specific signal processing techniques. Using an orthogonal frequency-division multiplexing signal for Long-Term Evolution networks as an example, we utilize a novel non-uniform companding quantizer to save a transmitted signal energy. Our results show that by using non-uniform quantization it is possible to further optimize 4G wireless networks.

A New Video Coding Algorithm using 3D-Subband Coding and Lattice Vector Quantization

  • Park, Joong-Han;Lee, Keun-Young
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.131-137
    • /
    • 1997
  • In this paper, we propose an efficient motion adaptive 3-dimensional (3D) video coding algorithm using 3D subband coding (3D-SBC) and lattice vector quantization (LVQ) for low bit rate. Instead of splitting input video sequences into the fixed number of subbands along the temporal axes, we decompose them into temporal subbands of variable size according to motions in frames. Each spatio-temporally splitted 7 subbands are partitioned by quadtree technique and coded with lattice vector quantization(LVQ). The simulation results show 0.1∼4.3dB gain over H.261 in peak signal to noise ratio (PSNR) at low bit rate(64Kbps).

  • PDF

Quantization of LPC Coefficients Using a Multi-frame AR-model (Multi-frame AR model을 이용한 LPC 계수 양자화)

  • Jung, Won-Jin;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • For speech coding, a vocal tract is modeled using Linear Predictive Coding (LPC) coefficients. The LPC coefficients are typically transformed to Line Spectral Frequency (LSF) parameters which are advantageous for linear interpolation and quantization. If multidimensional LSF data are quantized directly using Vector-Quantization (VQ), high rate-distortion performance can be obtained by fully utilizing intra-frame correlation. In practice, since this direct VQ system cannot be used due to high computational complexity and memory requirement, Split VQ (SVQ) is used where a multidimensional vector is split into multilple sub-vectors for quantization. The LSF parameters also have high inter-frame correlation, and thus Predictive SVQ (PSVQ) is utilized. PSVQ provides better rate-distortion performance than SVQ. In this paper, to implement the optimal predictors in PSVQ for voice storage devices, we propose Multi-Frame AR-model based SVQ (MF-AR-SVQ) that considers the inter-frame correlations with multiple previous frames. Compared with conventional PSVQ, the proposed MF-AR-SVQ provides 1 bit gain in terms of spectral distortion without significant increase in complexity and memory requirement.

Adaptive Quantization for Transform Domain Wyner-Ziv Residual Coding of Video (변환 영역 Wyner-Ziv 잔차 신호 부호화를 위한 적응적 양자화)

  • Cho, Hyon-Myong;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.98-106
    • /
    • 2011
  • Since prediction processes such as motion estimation motion compensation are not at the WZ video encoder but at its decoder, WZ video compression cannot have better performance than that of conventional video encoder. In order to implement the prediction process with low complexity at the encoder, WZ residual coding was proposed. Instead of original WZ frames, WZ residual coding encodes the residual signal between key frames and WZ frames. Although the proposed WZ residual coding has good performance in pixel domain, it does not have any improvements in transform domain compared to transform domain WZ coding. The WZ residual coding in transform domain is difficult to have better performance, because pre-defined quantization matrices in WZ coding are not compatible with WZ residual coding. In this paper, we propose a new quantization method modifying quantization matrix and quantization step size adaptively for transform domain WZ residual coding. Experimental result shows 22% gain in BDBR and 1.2dB gain in BDPSNR.

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.