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Abstract 
 

The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring 
simple encoders but handling more complex decoders, and its rate-distortion performance is 
highly affected by the quantization of measurements and reconstruction of video frame, which 
motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned 
Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The 
ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of 
bits required to encode the video frame, and it also guarantees a low quantization error due to 
the fact that the high frequency of small values close to zero in the predictive residuals limits 
the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by 
selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed 
block to improve the accuracy of prediction, and besides it reduces the computational 
complexity of motion estimation by the extraction of static area and 3-D Recursive Search 
(3DRS). Extensive experiments validate that the significant improvements is achieved by 
ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R 
improves both the objective and the subjective quality of the reconstructed video frame. 
Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion 
performance gain when compared with the existing CS-based video codecs. 
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1. Introduction 

1.1 Challenge and Objective 

Compressive Video Sensing (CVS) [1]-[3] refers to a technique that realizes the 
low-complex video coding by using the Compressive Sensing (CS) [4], which has been 
attracted a lot of research interest because of its potential application prospect in the 
resource-constrained environments, e.g., Wireless Multimedia Sensor Networks (WMSN) [5]. 
So far, the existing two problems in CVS have not been solved effectively yet, and they are 
quantization of CS measurements and reconstruction of video frame respectively. The 
rate-distortion performance of CVS is highly affected by them, and therefore we requires to 
exploit some good features of video signal for improving the accuracy of quantization and 
reconstruction. 

The first objective of this paper is to guarantee a low quantization error with as few bits as 
possible. Considering that the space-time correlation still remains in the measurement domain, 
we try to further remove the redundancy between CS measurements by using this property. 
These low redundant data are easier to be compressed by the entropy coding (e.g., Huffman 
[6]), and the high frequency of small values close to zero will also limits the intensity of 
quantizing noise. While reducing the amount of bits, it is still expected to obtain the 
improvement of reconstruction quality, and therefore the another objective of this paper is to 
propose an efficient reconstruction algorithm. Each to-be-reconstructed block has always 
some high-correlated temporal neighborhoods along the motion trajectories between the 
adjacent reconstructed frames, which provides convenience for guaranteeing the better quality 
with few measurements, and consequently we will focus on how to extract accurate motion 
vector field of the to-be-reconstructed video frame on the promise of not introducing excessive 
computations. 

1.2 Related Work 
Real-life implementation requires to produce a compressed bitstream from the CS 
measurements, and therefore recent literature has seen an explosion of interest in the 
quantization of CS measurements. It is the most straightforward solution to simply apply 
uniform Scalar Quantization (SQ) to each of the CS measurements, and however its poor 
rate-distortion performance brings trouble to CS recovery [7],[8]. To make up the performance 
degradation resulting from the inefficient SQ, some reconstruction algorithms [9],[10] were 
specially designed to resist quantizing noise, and but the fundamental causes cannot still be 
addressed only through an optimization of the reconstruction process. A more efficient 
approach is to make the quantization process better suited to the characteristic of CS 
measurements, e.g., [11] designs an optimal fixed-rate quantizer to minimize the quantization 
error depending on the distribution of CS measurements, and the Sigma-Delta quantizer in [12] 
and [13] even exploits the Restricted Isometry Property (RIP) of measurement matrix to 
provide robustness to quantizing noise. The one-dimensional (1-D) general signal is regarded 
as the quantized object in the above-mentioned methods, and but they cannot present the better 
performance when the quantized object is replaced with the more special 2-D image, which is 
because the intrinsic spatial correlation existing in natural images is neglected in their 
quantization process. The exploitation of spatial correlation benefits from the block-based CS 
(BCS) [14]-[16], i.e., the random measuring of CS is effectuated in blocks. [17] proposed a 
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framework of quantization via simple uniform SQ coupled with Differential Pulse Code 
Modulation (DPCM) of the CS measurements, and its surprisingly competitive rate-distortion 
performance breaks a new path for quantizing CS measurements of image. The main idea of 
DPCM-plus-SQ is to consider the previous block as a prediction and uniformly quantize the 
residual between the current block and its prediction of measurements, and however it is not 
efficient enough to select previous block as the prediction of current one because the 
non-stationarity of natural images is ignored. To address this problem, [18] proposed the 
Spatially Directional Predictive Coding (SDPC) to select the more suitable prediction for each 
block in terms of an optimal directional mode. Although the SDPC achieves the significant 
improvements in rate-distortion performance as compared with DPCM-plus-SQ, it also brings 
the two defects: (1) it increases the computational burden of encoder to determine the optimal 
prediction; (2) missing the flag of best predictive mode in transmission will severely disrupt 
the inverse quantization at the decoder. Therefore, it remains to be developed that the more 
economical and safe spatially directional mode. For 3-D video signal, there will be very little 
difference between consecutive frames in the measurement domain, and but this temporal 
correlation has not been incorporated into the BCS paradigm of video. Given this, in addition 
to exploit spatial correlation, we can further take advantage of temporal correlation when 
quantizing each video frame. 

The reconstruction process also plays an important role in the performance improvement of 
CVS system, and a lot of researches have been carried out for developing the effective joint 
reconstruction techniques which derived from the decoding strategy of Distributed Video 
Coding (DVC) [19]. The joint reconstruction consists of Side Information (SI) generation and 
residual recovery, in which the former provides a prediction of the to-be-reconstructed frame 
and the latter uses the traditional CS recovery algorithm (e.g., GPSR [20], OMP[21], etc.) to 
reconstruct the residual between original frame and its SI. The prediction accuracy of SI is 
especially crucial on the reconstruction performance because the high accurate SI makes the 
residual more sparse, and consequently the much attention has been devoted to SI generation. 
Without CS measurements, the SI can be interpolated, e.g., [22] and [23] reconstruct the 
current video frame with help of the SI interpolated by Frame Rate Up-Conversion (FRUC). 
Generally speaking, the SI generation with CS measurements has superior performance than 
that generated by FRUC algorithm, because the form uses the information of current frame to 
generate SI. Among the SI generation methods with CS measurements, the most classic one is 
that, the DISCOS framework proposed by [24] uses the sparsity-constrain prediction 
algorithm based on a dictionary of temporal neighboring blocks. The more prominent work is 
that Multi-Hypothesis (MH) based SI prediction proposed by [25], which uses a Tikhonov 
constrain of l2 norm to provide the better result with a low computational complexity. The 
exploitation of temporal redundancy is the important feature of MH  prediction, and however 
it still exists some other methods to use temporal correlation, e.g., [26] constructs the 
structured patch groups by the temporal nonlocal similarity to make a prediction, and [27] 
trains the PCA dictionary of to-be-reconstructed frame by using the temporal-neighboring 
blocks. Unfortunately, the MH-based SI generation ignores the motion information between 
the neighboring reconstructed frames, and its superior performance cannot be effectively 
exploited for the sequences with moderate or large motions, which will cause performance 
degradation and meanwhile bring blurring and ghost artifacts in the reconstructed frames. 
Therefore, we will provide an appropriate motion estimate scheme to compute the motion 
vector field of the to-be-reconstructed video frame for improving the accuracy of MH 
prediction. 
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1.3 Motivation and Contribution 
Space-Time Quantization (ST-Q). To improve the rate-distortion performance of quantized 
CVS, we present a quantization method which exploits the space-time correlation of CS 
measurements between video frames. Motivated by the two defects of SDPC: (1) the cost of 
extra computations and bits; (2) the non-stationary of predictive model, the ST-Q is trying to 
overcome them in basis of SDPC. The proposed method consists of two phases. In the first 
phase, we compute the difference between CS measurements of consecutive frames for 
removing the temporal redundancy in the measurement domain. In the second phase, we can 
further remove the spatial redundancy of the difference by using a spatially predictive strategy 
based on median filter [28]. The proposed quantization method does not require any 
supplementary bits, and the computations are also effectively limited by the fixed predictive 
model. 

Motion-Aligned Reconstruction (MA-R). On the basis of the MH-based method, the 
proposed joint reconstruction algorithm has ability to select highly-correlated temporal 
neighborhoods of each to-be-reconstructed block in terms of motion information between the 
adjacent reconstructed frames. The motivation of MA-R is derived from the enforcement of 
temporal correlation between the to-be-reconstructed block and its MH predictors. The 
process of motion estimation is implemented in the measurement domain, and the background 
extraction and 3-D Recursive Search (3DRS) [29] are also used to reduce the computational 
complexity when computing the motion vector field of to-be-reconstructed video frame. 

The remainder of this paper is organized as follows. The overall architecture of the 
proposed CVS system is firstly presented in Section 2, and the implementation of Space-Time 
Quantization (ST-Q) is described in detail in Section 3. Then, Section 4 presents how to 
exploit motion information to realize the Motion-Aligned Reconstruction (MA-R). 
Experimental results are reported in Section 5 to evaluate the performance of proposed ST-Q 
and MA-R. Finally, the conclusion is made in Section 6. 

2. Framework Overview 
The block diagram of CVS system with Space-Time Quantization (ST-Q) and 
Motion-Aligned Reconstruction (MA-R) is depicted in Fig. 1. Due to the feature that the ST-Q 
quantizes the frame difference, the encoder of proposed CVS system is different from the 
traditional system (e.g., DISCOS) which directly divides the input video frames into non-key 
frames and key frames, and but to realize the BCS measuring of non-key frames and key 
frames by the two-layer structure. At the base layer, each block xk of size B×B (N = B2) in the 
input video frame x is measured by using the measurement matrix ΦNK of size MNK×N which 
constructed according to the subrate SNK = MNK/N of non-key frame, and the corresponding 
measurement vector yk of each block can be computed as follows, 

NK   1, 2, ,k k k K= ⋅ =y Φ x  .                                         (1) 
At the refinement layer, the key frame xK is extracted periodically from the video sequence, 
and then measured again to satisfy the subrate SK = MK/N of key frames based on the existing 
measurement vector obtained at the base layer. According to the number MSup = MK - MNK of 
supplementary measurements, we construct a new measurement matrix ΦSup of size MSup×N, 
and the corresponding measurement vector ySup,k of each block xK,k can be computed as 
follows, 

Sup, Sup K,   1, 2, ,k k k K= ⋅ =y Φ x  .                                   (2) 
After BCS measuring, the measurement vectors of key frames and non-key frames are 
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respectively input into the ST-Q, and then compressed to bits by the Huffman coding. Finally, 
these bits and some important decoding parameters are packed into a packet and sent to the 
decoder. The implementation of ST-Q will be described in Section 3. 

At the decoder, the priority is to generate the measurement vectors y�K,k and y�NK,k of key 
frame and non-key frame respectively. From the de-quantized measurement vectors y�k (k = 
1,…,K) at the base layer, the measurement vector y�NK,k  of non-key frame can be easily 
extracted by skipping the measurement vector of key frame periodically. Once the current 
measurement vector y�k is from the key frame, the y�K,k  can be generated by arranging the 
de-quantized supplementary measurement vector y�Sup,k in rows behind y�k, i.e.,  

K,
Sup.

ˆ
ˆ

ˆ
k

k
k

 
=  
 

y
y

y
.                                                             (3) 

Similarly, the measurement matrix of each block in key frame can be constructed as follows, 
NK

K
Sup

 
=  
 

Φ
Φ

Φ
.                                                             (4) 

Note that we will make sure to use the same measurement matrix at the both encoder and 
decoder by synchronously updating the seed (initial state) of pseudorandom generator. After 

 
(a) 

 

 
(b) 

Fig. 1. Block diagram of CVS system with Space-Time Quantization (ST-Q) and Motion-Aligned 
Reconstruction (MA-R). (a) Encoder. (b) Decoder. 
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generating y�K,k and y�NK,k , the key frame can be reconstructed independently by using the 
following model, 

{ }K K K 2 1
ˆ ˆarg min λ= − ⋅ + ⋅

x
x y Θ Ε x Ψ x ,                               (5) 
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

,                    (6) 

Ψ is the sparse representation matrix of video frame x. This way is similar to the intra model in 
traditional video codec, and therefore it is called as intra reconstruction. Some effective 
intra-reconstruction algorithms can be used to produce the key frame, e.g., [30] proposed the 
collaborative sparsity based recovery, [31] proposed to reconstruct frame by using the 
adaptively learned sparsifying basis, and [32] proposed the recovery method to explore the 
structured Laplacian sparsity of DCT coefficients, etc. In this paper, considering that the 
above-method algorithms have a high computational complexity because of their 
requirements to train the sparse representation matrix online, the model (5) uses the the fixed 
representation matrix based BCS-SPL-DDWT algorithm proposed by [15] to reconstruct each 
key frame at a high subrate. The proposed MA-R algorithm of non-key frame is realized by 
residual recovery coupled with SI generation as follows, 

( )R, NK, NK SI, NK NK, SI,ˆ ˆ ˆ ˆk k k k k= − = −y y Φ x Φ x x ,                            (7) 

{ }2
NK, R, NK 12
ˆ ˆarg mink k λ= − ⋅ + ⋅

r
r y Φ r Ψ r ,                             (8) 

NK, SI, NK,ˆ ˆ ˆk k k= +x x r ,                                                     (9) 
where λ is a balance factor. The model (8) is still be solved by BCS-SPL-DDWT, and the SI 
x�SI,k of current block which can be obtained by using MH-based prediction [16], i.e., 

{ }2 2
NK, NK, NK K, 22

ˆ ˆarg mink k k η= − ⋅ + ⋅
w

w y Φ H w Γ w ,                    (10) 

SI, K, NK,ˆ ˆk k k=x H w ,                                                  (11) 
where η is a balance factor, HK,k is a matrix of size N×L whose columns hi (i = 1,…,L) are the 
rasterizations of temporal neighborhoods in the reconstructed key frames along the motion 
trajectories of current block, i.e., HK,k = [h1, h2, …, hL], and Γ is a diagonal Tikhonov matrix in 
the form of  

NK, NK 1 2

NK, NK 2

ˆ 0

ˆ0

k

k L

 −
 

=  
 −  

y Φ h

Γ
y Φ h

 .                     (12) 

The key point of proposed MA-R algorithm is to compute the motion vector field of the 
to-be-reconstructed frame by using the neighboring reconstructed key frames. To not 
introduce excessive computations, we design a method to extract the static area from the two 
consecutive reconstructed key frames, and use the 3DRS strategy to estimate the motion 
vectors of non-static area, which will be discussed detailedly in Section 4. 
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3. Space-Time Quantization (ST-Q) 
For many types of video (e.g., surveillance video), there will be very little difference between 
consecutive frames, and besides each block of frame difference has the intrinsic spatial 
correlation with its neighboring blocks. The Johnson-Lindenstrauss (JL) lemma 1  [33] 
guarantees that the above space-time characteristic is also be maintained in the measurement 
domain. It is obvious that the difference after removing space-time redundancy can be 
represented using far fewer bits than the original CS measurement vector, and meanwhile the 
Laplacian distribution of difference is also helpful to suppress the quantizing noise of SQ [2]. 
How to remove the space-time redundancy existing in the each block of CS measurements ? 
The ST-Q will give an answer below. 

The proposed ST-Q quantizer architecture is depicted in Fig. 2. We firstly compute the 
difference vector dt between the CS measurement vectors of current frame yt and previous 
frame y�t-1 to remove the temporal redundancy, and then use the Median Filter based Predictive 
Quantization (MFPQ) to further reduce the spatial redundancy between blocks in the 
difference vector dt. Along the temporal direction, a feedback loop de-quantizes the 
quantization index it to produce the quantized difference vector d�t such that y�t =  y�t-1 + d�t, and 
then get the previous quantized measurement vector y�t-1  with a delay buffer. The block 
diagram of MFPQ is shown in Fig. 3, in which it is important how to generate the prediction of 
current difference vector dt. As shown in Fig. 3(c), we will save the four quantized difference 
vectors d�t,k↻1, d�t,k↻2, d�t,k↻3 and d�t,k↻4 of spatially neighboring blocks in the register for the 
difference vector dt,k of current block, and these neighboring difference vectors construct the 
candidate set CS to generate the prediction of current block. 

Different from the SDPC proposed in [18], the Median Filter (MF) is applied to the 
components d�t,k↻i(m) (i = 1, 2, 3, 4) of vectors in candidate set CS, and the output is just the 
prediction d�P,k of the difference vector dt,k of current block, i.e., 

P, , ,1 4,3,2
ˆ ˆ ˆ ˆ ˆ( ) ([ ( ), ( ), ( ), ( )])k t k t k t k t km median m m m m=d d d d d菉 菉 .               (13) 

where median(·) is the MF operation. Some defects of SDPC motivate us to make a prediction 
by using MF. The SDPC found that the fixed directional model used in DPCM violates the fact 
that the non-stationary of natural images, and therefore it introduces the four predictive 
directional models (Vertical, Horizontal, DC and Diagonal) and selects the optimal directional 
model from them to remove the spatial redundancy as much as possible. Although its superior 

1 In brief, the JL lemma holds that the L points in RN can be projected into a K-dimensional subspace while 
approximately maintaining pairwise distances as long as K ≥ O(log L). 

     
                                          (a)                                                           (b) 
Fig. 2. The proposed ST-Q quantizer architecture. (a) quantization. (b) de-quantization. Note that m 

denotes the component of each vector. 
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performance than DPCM, this improvement is traded at the cost of extra computations and bits. 
Importantly, it results in the complete failure of de-quantization to lose the bits representing 
the flag of the best predictive model in the process of transmission, and consequently the 
practicability of SDPC has yet to be investigated. The use of MF cannot produce the extra bits 
so that it can avoid the risk of losing the key flags, and besides the MF has also a low 
computational complexity than the selection of optimal directional model. A fundamental 
property of MF states the prediction d�P,k(m) statisfies 

4 4

P, , , ,
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )    1, 2,3, 4i jk t k t k t kp pi i
im m m m j

= =

− ≤ − =∑ ∑d d d d菉j ? ,        (14) 

which guarantees that a larger variability of spatial correlation cannot happen suddenly. 
Therefore, for the predictive accuracy, the MFPQ can still provide a comparable result with 
SDPC. 

To demonstrate the better performance of proposed MFPQ, we make a further quantitative 
comparison with SDPC for correlation and computations respectively. We use the correlation 
coefficient [17] to measure the correlation of measurement vector yk of current block and its 
prediction yP,k, defined as 

T
P,

P,2 2

k k
k

k k

ρ =
y y

y y
.                                                     (15) 

For each block, the DPCM uses directly the measurement vector yk-1 of previous block as the 
prediction, the SDPC selects the optimal prediction from four directional models by using the 
least square error criterion, and the proposed MFPQ computes the median value of 
components in measurement vectors of neighboring blocks as the prediction. Table 1 presents 
the average correlation coefficients for DPCM, SDPC and MFPQ, which are computed by Eq. 
(15) over all 16×16 blocks for three 512×512 test images at the different subrates. There is no 
doubt that the SDPC obtains the largest correlation coefficient among all methods depending 

   
                                         (a)                                                                    (b) 

            
                                          (c) 
Fig. 3. Block diagram of median filter based predictive quantization (MFPQ). (a) quantization. (b) 
de-quantization. (c) position of candidates saved in register. Note that m denotes the component of 

each vector. 
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on the more computations and bits, and the DPCM shows the worst performance due to the 
fixed predictive direction. However, the average correlation coefficient of MFPQ obtains the 
moderate values between those of DPCM and SDPC at any subrate, e.g., the MFPQ has 0.0074 
and -0.0171 gains on average when compared with DPCM and SDPC respectively at the 
subrate of 0.35. Although the average correlation coefficients of MFPQ are inferior than those 
of SDPC, it can be seen from Table 2 that the proposed MFPQ only requires 6M comparison 
operators when making a prediction for the measurement vector of length M, and its 
computations are far below those of SDPC including the more complex floating-point addition 
and multiplication. Therefore, the proposed MFPQ makes a good tradeoff between predictive 
performance and computational complexity. 

4. Motion-Aligned Reconstruction (MA-R) 
It is helpful for improving the accuracy of SI in the reconstruction of non-key frame to exploit 
motion information between the two consecutive key frames because a high correlation exists 
between the current block and its motion-aligned block, which motivates us to design the 
MA-R algorithm that selects all L (= W2) temporal neighborhoods in the W×W windows 
centered on the motion-aligned block xc,k of current block xNK,k to construct the MH matrix 
HK,k in Eq. (11), and the MA predictive model is shown in Fig. 4. The key of MA-R algorithm 
is how to compute the motion vector field of each non-key frame, which is described as 
follows. 

Firstly, we divide a large static area in several successive non-key frames from their 
adjacent reconstructed key frames to avoid the unnecessary search points for static blocks. The 
similarity between their adjacent reconstructed key frames is measured block-by-block as 
follows, 

( ) ( ) ( )prev next prev next
NK, K, K, K, K,1 1

ˆ ˆ ˆ ˆ1 D Dk k k k kγ α α= − − + −x x x x ,                    (16) 

 

Table 1. Average correlation coefficients in measurement domain for various quantization 
methods 

Subrate 0.10 0.25 
Image Lenna Peppers Clown Avg. Lenna Peppers Clown Avg. 
DPCM 0.9610 0.9396 0.8446 0.9151 0.9576 0.9338 0.8291 0.9068 
SDPC 0.9710 0.9616 0.8900 0.9409 0.9674 0.9558 0.8775 0.9336 
MFPQ 0.9653 0.9495 0.8516 0.9221 0.9608 0.9425 0.8343 0.9125 
Subrate 0.35 0.50 
Image Lenna Peppers Clown Avg. Lenna Peppers Clown Avg. 
DPCM 0.9630 0.9401 0.8423 0.9151 0.9653 0.9432 0.8488 0.9191 
SDPC 0.9713 0.9608 0.8859 0.9393 0.9731 0.9621 0.8902 0.9418 
MFPQ 0.9666 0.9498 0.8510 0.9225 0.9688 0.9526 0.8584 0.9266 

 
Table 2. Comparisons of computational complexity for prediction scheme when quantizing each 

block 
Quantization Method Multiplications Additions Comparisons 

DPCM 0 0 0 
SDPC 9M-4 M 3 
MFPQ 0 0 6M 

                   *M denotes the length of measurement vector of each block 
 



330                                                                  Li et al.: Space-Time Quan. and Motion-Aligned Recon. for Block-based  CVS 

 
where γNK,k is the similarity measure of the k-th block in the non-key frame, x�K,k

prev and x�K,k
next 

denotes the reconstructed blocks in the previous and next key frames respectively, ||·||1 is the l1 
norm, and α is a weighting factor. The first item of Eq. (16) is to directly compute the sum of 
the absolute differences between pixel values, and but it cannot reveal the similarity between 
blocks completely. Considering the human eyes’ sensitivity to the edge of object, the 
block-matching error of edge region is more easy to reflect the similarly between blocks, and 
therefore we construct the operator D(·) to extract the medium frequency DCT coefficient 
including edge information, and form the second item of Eq. (16) to be the auxiliary of 
measuring the similarity between blocks. At α = 0, only the luminance differences are 
considered in the similarity measure. As α gets larger, the DCT coefficient differences play a 
more important role to match the edge information. However, too large an α increases the 
effects of noise components, degrading the matching performance. In this work, α is fixed to 
0.3 experimentally. By implementing the operator D(·), in terms of the spatial position of 
2D-DCT coeffient matrix, the range from the 0.382×B2-th DCT coefficient to 0.618×B2-th 
DCT coefficient in the zig-zag order can be extracted as the medium frequency coefficients of 
each block with size of B×B. To improve the block-matching accuracy, we use the overlapped 
block with size of 1.5B×1.5B to compute the matching error due to the fact that the block with 
a large size contains the more features. After getting the similarity measure of each block, the 
block classification map of non-key frame is generated by a hard-thresholding decision as 
follows,  

 ( ) NK,
NK,

NK,

1,  
0,  

k
k

k

T
T

γ
γ

≤
=  >

map s ,                                        (17) 

where s denotes the spatial position of the k-th block, and T is the threshold. If mapNK,k(s) is 
labeled as 1, the k-th block is a static block, and otherwise the k-th block is a non-static block. 
The blocks existing in the boundary region rarely contain movements (as shown in Fig. 5), and 
therefore they can be used to determine the value of threshold T. Suppose nb is the total number 
of boundary blocks, we sort their similarity measures in ascending order, and then the 
threshold T is set to the average value of remaining similarity measures after removing the first 
and last 0.15nb values respectively. 

Secondly, we design a smoothing operator to remove the isolated blocks in the block 
classification map. The occurrence of isolated blocks derives from the fact that the variational 

 
Fig. 4. MA predictive model illustration. xc,k denotes the motion-aligned block. 
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luminance and texture details on the surface of object leads to the problem of mismatch. As 
shown in Fig. 6(a), the isolated blocks cause the discontinuity in static area or non-static area, 
and they can be identified according to any one of the following conditions when the mapNK,k(s) 
is labeled as 0, 

 The 8 neighbors of mapNK,k(s) are all labeled as 1(the first row of Fig. 6(b)); 
 The only one in the 4 neighbors of mapNK,k(s) is labeled as 0, and the four diagonal 

neighbors of mapNK,k(s) are all labeled as 1 (the second row of Fig. 6(b)); 
 The 4 neighbors of mapNK,k(s) are all labeled as 1, and there are two at most to be 

labeled as 0 in the four diagonal neighbors of mapNK,k(s) (the third row of Fig. 6(b)). 
If the mapNK,k(s) is labeled as 1, all logic arrays in Fig. 6(b) are required to be inverted. After 
determining the positions of isolated blocks, the mapNK,k(s) is smoothed by using a 3×3 mask 
as follows, 

( )NK,

1,   10
0,   10k

R
R
≥

=  <
map s ,                                           (18) 

( ) ( )
1 1

1 1
NK, ,,  

p q
k x ymap s p s qR mask p q

=− =−

= + +⋅∑ ∑ ,                      (19) 

1 2 1
2 0 2
1 2 1

 
 =  
  

mask .                                                 (20) 

where s = (sx,sy) denotes the position of isolated block. As shown in Fig. 6(c), it can be seen 
that the isolated blocks are completely eliminated after smoothing block classification map, 
and the static blocks and non-static blocks are respectively segmented into a set of connected 
regions. 

After determining the static blocks in the several successive non-key frames, we finally 
compute the motion vectors of the non-static blocks. As a consequence of JL lemma, the 
full-search based block matching algorithm can be realized in the measurement domain [25], 
that is, 

c, NK, NK 2
ˆarg min

k
k k∈
= −

x V
x y Φ x ,                                         (21) 

where y�NK,k is the de-quantized measurement vector of current non-static block, Vk denotes 

      
Fig. 5. The comparison of blocks existing in the boundary region for the previous and next key 

frames. The blocks surrounded by red line lie in the boundary region of video frame. 
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the candidate set including all blocks in the search area, x denotes the matching block 
candidate, and xc,k denotes the best matching block of current non-static block in the previous 
key frame. However, the full search not only introduces the excessive computational 
complexity because it requires to traverse all possible candidates within the search area, but 

also it results in some inaccurate motion vectors without the smoothness constraint of motion 
vector field, To overcome the defects of full search, the 3DRS is used to construct the 
candidate block set Vk, in which each matching block candidate is extracted by using the 
candidate motion vectors of current non-static block. As shown in Fig. 7, the candidate motion 
vector set C of current non-static block is composed by the seven candidate motion vectors 
(the coordinate of current non-static block is defined as B): zero vector 0; the motion vectors of 
spatio-neighboring block locations Sa (upper) and Sb (left); the motion vectors of 
temporal-neighboring block locations Ta (lower) and Tb (right); the update motion vectors of 
spatio-neighboring block locations Ua (upper-left) and Ub (upper-right), that is, 

K K
a b a b a

a b b a b

{ , ( ), ( ), ( ), ( ), ( )
, ( ) }  ,

MVF MVF MVF MVF MVF
MVF

=
+ + ∈
C 0 S S T T U

R U R R R US
,        (22) 
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0 1 1 2 2 0 0 0 0
 − −                  

=                   − −                  
US ,              (23) 

where MVF(·) represents the motion vector field of the current non-key frame, and MVFK(·) 
represents the motion vector field of the previous key frame. This approach imposes the 
smoothness constraint implicitly through predictive search, and therefore it guarantees the 
accuracy of motion vector with a low complexity. 

By the above process, we can get the motion vector field of each non-key frame. In terms of 

                   
                                        (a)                                                                     (b) 

                
                                         (c) 
 

Fig. 6. Static area illustration before and after smoothing block classification map. The isolated 
blocks are highlighted in the red circle. (a) static area before smoothing. (b) logic arrays used to 

identify isolated block. (c) static area after smoothing. 
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the motion vector field, we find the motion-aligned block of to-be-reconstructed block, and 
then the corresponding MH matrix can be constructed whether non-static block or static block. 
Implementing Eq. (10) and (11), we predict the SI of each non-key frame, and reconstruc the 
residual frame between the SI and its original by Eq. (7) and (8).  Finally, we combine the 
residual frame into SI to generate the reconstructed frame by using Eq. (9). 

5. Experimental Results 
In this section, various experiments are conducted to evaluate the performance of proposed 
CVS system2. First, we compare the performances of proposed ST-Q with those of the 
uniform SQ, the DPCM-plus-SQ proposed by [17] and the SDPC proposed by [18]. Second, 
the performance of proposed MA-R algorithm is evaluated by using Peak Signal-to-Noise 
Ratio (PSNR) and Structural SIMilarity (SSIM) [34], and the comparisons with the recovery 
algorithm of DISCOS system [24] and MH-based Predictive-Residual (MHPR) reconstruction 
[25] are also presented. Finally, the rate-distortion performance of proposed CVS system is 
compared with those of CS-KLT video codec (one of state-of-the-art CVS system) proposed 
in [35] and CS-based video codec in our previous work [36]. 

2 The MATLAB source code of the proposed CVS system including ST-Q and MA-R can be downloaded from the 
website: https://sites.google.com/site/draner358. 

 
 

Fig. 7. Relative positions of candidate motion vectors used in 3DRS. 

Table 3. Average MSE and bitrate (in kbps) comparison of various quantization methods for all test 
sequences at the different subrates. 

Subrate 
Quantization Method of CS Measurements 

Uniform SQ DPCM-plus-SQ [17] SDPC [18] ST-Q 
MSE Bitrate MSE Bitrate MSE Bitrate MSE Bitrate 

0.1 1.1483 3473.05 1.1483 2610.30 1.1441 2738.43 0.5756 2932.10 
0.2 1.3308 5515.93 1.3308 4005.37 1.3265 4284.59 0.5896 4118.84 
0.3 1.3316 7290.15 1.3316 5292.36 1.3274 5593.58 0.5942 5198.71 
0.4 1.3315 9301.04 1.3315 6756.31 1.3277 7097.66 0.5989 6448.61 
0.5 1.3407 11006.62 1.3407 7989.64 1.3376 8380.76 0.5976 7497.47 

Avg. 1.2966 7317.36 1.2966 5330.80 1.2927 5619.00 0.5912 5239.15 
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The eight test sequences with CIF resolution of 352×288 pixels and frame rate of 30 fps are 
used in the experiments, and these are Foreman, Mobile, Football, Highway, Container, Bus, 
Soccer and Stefan. At the encoder side of proposed CVS system, the block size B×B of each 
frame is 8×8, the bitdepth b of each quantization is set to 8 in order to guarantee a fair 
comparison among all quantization methods, the subrate SK of key frame is set to 0.7, the 
subrate SNK of non-key frame varies from 0.1 to 0.5, and the measurement matrices ΦK and 
ΦNK both use the structurally random Hadamard matrix proposed by [37]. The key frame 
frequency is set to one key frame for every 10 frames, and the first 100 frames of each test 
sequence are input into the proposed CVS system. For the construction of MH matrix HK,k, the 
radius W of temporal neighboring window is set to 3B/8, and the balance factor η is set to 
0.0625. The compared algorithm uses their original parameter settings so that they provides 
the best results respectively. All experiments are implemented on a PC with an Intel Core i7 
CPU at 3.6 GHz and 8GB RAM. 

5.1 Quantization Performances 
The uniform SQ, DPCM-plus-SQ, SDPC and proposed ST-Q are respectively used in the 
proposed CVS system to encode the first 100 frames of each test sequence, and the average 
Mean Square Error (MSE) of quantization and bitrate in kilo-bits per second (kbps) on all test 
sequence are presented in Table 3. It can be seen that the MSE of proposed ST-Q is more 
smaller than others at any subrate, and it decreases 53.49% on average over the SDPC, which 
benefits from the fact that the spatial-temporal prediction of ST-Q reduces the number of 
nonzero values in measurement residuals so as to suppresses the accumulation of quantization 
errors on the large values. Meanwhile, we can also observe from Table 3 that the ST-Q 
requires few bits to encode measurements when compared with the other three methods, which 
indicates that the ST-Q effectively removes the spatial-temporal redundancy of measurements 
in video sequences. Fig. 8 presents the rate-distortion performance of the proposed CVS 
system combined with the different quantization methods, in which the average PSNR values 
and bitrates on all test sequences are computed for the various quantization methods, and it 
sufficiently demonstrates that the superiority of ST-Q over the other compared methods. 

5.2 Reconstruction Comparison 

 
Fig. 8. Rate-distortion curve for various quantization methods according to the average PSNR 

values and bitrates on all test sequences. 
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Next, the performance of proposed MA-R algorithm is evaluated from objective and 
subjective views by comparing it with the recovery algorithm of DISCOS [24] and MHPR 
reconstruction algorithm [25]. The average PSNR results reconstructed by various methods on 
all test sequences are provided in Table 4, and it can be seen that the proposed MA-R 
algorithm obtains the higher PSNR value than other two compared methods at any subrate, in 
which its average PSNR gains are 2.88 and 0.44 dB when compared with DISCOS and MHPR 
respectively. The similar results can also be achieved from the viewpoint of the SSIM, which 
can be observed in Table 4, and the MA-R algorithm obtains the 0.0714 and 0.0048 SSIM 
gains on average when compared with DISCOS and MHPR respectively. The inferior 
objective evaluation of DISCOS is attributed to its way of sparsity-constrain prediction which 
is not suitable to express the relationship between the current reconstructed blocks and its 

Table 4. Average PSNR (in dB), SSIM and Processing Time (s/frame) comparison of various 
reconstruction methods for all test sequences at the different subrates 

Subrate 
Reconstruction Method 

DISCOS [24] MHPR [25] MA-R 
PSNR  SSIM Time PSNR  SSIM Time PSNR  SSIM Time 

0.1 26.39 0.7391 11.25 27.84 0.7984 1.97 28.24 0.8111 3.14 
0.2 28.31 0.8093 8.39 30.16 0.8740 2.03 30.68 0.8814 3.70 
0.3 28.98 0.8325 7.89 31.50 0.9047 2.07 31.99 0.9082 3.88 
0.4 29.86 0.8583 8.44 32.90 0.9292 2.11 33.32 0.9300 3.97 
0.5 30.61 0.8791 8.82 33.94 0.9451 2.16 34.31 0.9446 3.90 

Avg. 28.83 0.8237 8.96 31.27 0.8903 2.07 31.71 0.8951 3.72 
 

       
 

Fig. 9. Visual comparison of the reconstructed 2-th frame of Foreman by different methods (SNK = 
0.1). From left to right: DISCOS [24], MHPR [25], and the proposed MA-R. 

 

     
 

Fig. 10. Visual comparison of the reconstructed 2-th frame of Football by different methods (SNK = 
0.1). From left to right: DISCOS [24], MHPR [25], and the proposed MA-R. 
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temporal neighbors, and however the MH prediction used in MHPR and MA-R can better 
reveal the temporal correlation between the neighboring video frames. Due to the exploitation 
of motion information between frames, the reconstruction performance of MA-R algorithm 
acquires the effective improvement when compared with the MHPR algorithm without the 
motion estimation. The average processing time to reconstruct a video frame for each method 
is also provided in Table 4. It can be seen that the proposed MA-R algorithm has a moderate 
computational complexity, and its reconstruction time is slightly over that of MHPR, which is 
derived from the computational burden of estimating the motion vector field. Because we 
simplify the procedure of motion estimation, and the MA-R algorithm has only 1.65 s time 

gains on average when compared with MHPR algorithm. We also visually assesses some 
video frames constructed by different methods. Figs. 9-10 show the reconstructed frames of 
Foreman and Football at the subrate SNK = 0.1 respectively. It can be observed that the 
proposed MA-R method provides the pleasant results for each test sequence, e.g., for Foreman 
sequences as shown in Fig. 9, the face recovered by these competing methods contains many 
annoying artifacts, and but the proposed method clearly perceives the face. 

5.3 Rate-Distortion Performances 
Fig. 11 compares the rate-distortion performances, averaged over the first 100 frames of 
Foreman, Highway and Container sequences respectively, of the Intra coded results by the 
H.264/AVC JM9.5 software (H.264i), the CS-KLT codec proposed by [35], the CS-based 

     
                                      (a)                                                                         (b) 

       
                                      (c) 
Fig. 11. Rate-distortion curve for H.264/AVC-Intra (H.264i), CS-KLT codec [35], our previous 

work [36],  and the proposed CVS system: (a) Foreman. (b) Highway. and (c) Container. 
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video codec in our previous work [36] and the proposed CVS system. The CS-KLT codec 
implements the motion estimation and motion compensated interpolation at the decoder by the 
sparsity-aware reconstruction using interframe Karhunen-Loѐve Transform basis, and it 
exhibits the excellent performance among the existing CS-based video codecs. Note that the 
results of CS-KLT codec are directly taken from the order-10 decoding in [35]. The CS-based 
video codec in our previous work [36] is different from the proposed CVS system: (1) it adopts 
a DPCM-based nonuniform quantizer; (2) its reconstruction is realized by the autoregressive 
prediction and adaptive PCA residual recovery. From Fig. 11, it is observed that the proposed 
codec is superior over the whole range of bitrates compared to the CS-KLT codec, e.g., the 
highest PSNR gain can be up to about 8 dB for Container sequence. Compared with [36], the 
proposed CVS system has a better rate-distortion performance for Foreman and Container 
sequences, and a similar PSNR curve is also obtained for Highway sequences with large static 
scenes. Besides, the CS-KLT codec requires lots of computations, e.g., its order-2 decoding 
time is about 332.81 seconds per frame on average when the subrate is 0.125, the codec in [36] 
requires about 10.14 seconds on average to decode a frame, and but the decoding time of our 
codec is only about 3.72 seconds on average per frame. Our success is mainly attributed to the 
three points that 1) the ST-Q quantization acquires both a low MSE and bits amount than the 
uniform and non-uniform SQs used respectively in the CS-KLT codec and our previous work 
[36], 2) the MA-R algorithm uses the better MH prediction with motion estimation and but 
CS-KLT codec still uses the traditional sparisity-constrain prediction, and 3) the MA-R 
guarantees a low computational complexity by replacing the KLT basis (or PCA basis) 
computed by multiple loop iterations in CS-KLT codec and video codec in [36] with the MH 
matrix constructed directly by these temporal neighbors. However, it can be seen that there is 
still a considerable performance gap between all CS-based video codecs and H.264i, which is 
attributed to the difficulty of solving inverse problem in CS reconstruction. 

6. Conclusion 
In this paper, we presented a practical CVS system combined with the ST-Q and MA-R. At the 
encoder, the ST-Q is used to quantize the CS measurements of video sequence. To remove the 
space-time redundancy between the measurement vectors of neighboring video frames, the 
ST-Q firstly computes the measurement vector of frame difference to remove the temporal 
redundancy, and then uses MFPQ to further reduce the spatial redundancy between blocks in 
the frame difference. After removing space-time redundancy, the predictive residual vector of 
each frame can be represented using far fewer bits than its original CS measurement vector, 
and meanwhile the quantization errors are also effectively reduced due to suppressing the 
accumulation of quantization noises on the lager values. At the decoder, the MA-R algorithm 
exploits the motion information between the two consecutive key frames to improve the MH 
prediction, and the MH matrix is constructed by selecting temporal neighborhoods in the 
windows centered on the motion-aligned block of current block. To not introduce the 
excessive computations, the MA-R algorithm firstly extracts the static area in several 
successive non-key frames to avoid the unnecessary search points for static blocks, and then 
computes the motion vectors of non-static blocks by using 3DRS to further reduce the search 
points while guaranteeing the accuracy of motion vectors with the smoothness constraint of 
motion vector field. Various experiments are performed to evaluate the performance of 
proposed CVS system from some perspectives, and their results demonstrated that the 
proposed ST-Q used in our codec reduces effectively the quantization errors of measurements 
so as to guarantee a better rate-distortion performance when compared with the uniform SQ, 
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DPCM-plus-SQ and SDPC, and the proposed MA-R algorithm has the superior performance 
than the existing reconstruction methods DISCOS and MHPR in both PSNR and visual quality. 
Combined with the ST-Q and MA-R, the proposed CVS system obtains a significant 
rate-distortion performance gain when compared with the existing CS-based video codecs. 
However, our codec still has the inferior performance when compared with the H.264/AVC. 
Therefore, we still require some future works to further improve the rate-distortion 
performance of CS-based video codec. Besides, the buffer sizes of SDPC and proposed MFPQ 
quantization are proportional to the number of CS measurements, which could be an issue in 
the resource constrained sensing environment. In the future, we will study how to reduce the 
memory size of predictive quantization. 
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