• Title/Summary/Keyword: gaba

Search Result 684, Processing Time 0.031 seconds

Probiotic Properties and Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FBT215

  • Kim, Jaegon;Lee, Myung-Hyun;Kim, Min-Sun;Kim, Gyeong-Hwuii;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.783-791
    • /
    • 2022
  • Gamma-aminobutyric acid (GABA) improves various physiological illnesses, including diabetes, hypertension, depression, memory lapse, and insomnia in humans. Therefore, interest in the commercial production of GABA is steadily increasing. Lactic acid bacteria (LAB) have widely been reported as a GABA producer and are safe for human consumption. In this study, GABA-producing LAB were preliminarily identified and quantified via GABase assay. The acid and bile tolerance of the L. plantarum FBT215 strain were evaluated. The one-factor-at-a-time (OFAT) strategy was applied to determine the optimal conditions for GABA production using HPLC. Response surface methodology (RSM) with Box-Behnken design was used to predict the optimum GABA production. The strain FBT215 was shown to be acid and bile tolerant. The optimization of GABA production via the OFAT strategy resulted in an average GABA concentration of 1688.65 ± 14.29 ㎍/ml, while it was 1812.16 ± 23.16 ㎍/ml when RSM was applied. In conclusion, this study provides the optimum culture conditions for GABA production by the strain FBT215 and indicates that L. plantarum FBT215 is potentially promising for commercial functional probiotics with health claims.

Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap (Lactobacillus brevis 균주를 이용한 다래 수액에서의 감마아미노뷰티르산 (γ-Aminobutyric Acid) 생산 최적화)

  • Jeong, Myeong-Kyo;Jeong, Ji-Hee;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.214-222
    • /
    • 2016
  • This study was performed to increase the production of ${\gamma}$-aminobutyric acid (GABA) by lactic acid bacteria (Lactobacillus brevis CFM11) and manufacture an optimum medium using the sap from Darae (Actinidia arguta). The concentration of GABA in the fermented sap was determined using GABase enzymatic assay. The isolated L. brevis CFM11 produced $605.67{\mu}g/mL$ GABA after incubation for 24 hours at $37^{\circ}C$ in broth. The sap was fermented by L. brevis CFM11 under optimum conditions of $32^{\circ}C$ for 48 hours with 40% rice bran extract, 1.0% sucrose, 3.0% soytone, 0.2% magnesium sulfate, and 0.2% MSG. The fermented sap produced a concentration of $1366.13{\mu}g/mL$ GABA. These results demonstrate that fermenting Darae sap using L. brevis CFM11 can produce a fermented sap beverage with increased GABA content.

Effect of Lidocaine on the Release, Receptor Binding and Uptake of Amino Acid Neurotransmitters In vitro (Lidocaine이 아미노산 신경전도물질의 유리, 수용체 결합, 및 섭취에 미치는 효과에 관한 시험관내 실험에 관한 연구)

  • Oh, An-Min;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.17-29
    • /
    • 1988
  • The author examined the effects of lidocaine on the veratrine-or potassium-induced release of neurotransmitters to determine the possible role of amino acid neurotransmitters in lidocaine-induced convulsion. The examined transmitters were gamma-aminobutyric acid (GABA), aspartic acid, glutamic acid and norepinephrine which are released from the synaptosomes. Furthermore, the effects of lidocaine on the binding to receptors and synaptosomal uptake of the two transmitters, GABA and glutamic acid, were determined in crude synaptic membranes and synaptosomes. In addition, the effects of propranolol, norepinephrine and serotonin on the release of amino acid neurotransmitters were also examined. The veratrine-induced release of GABA was most severely inhibited by lidocaine and propranolol, while norepinephrine and serotonin reduced the release of aspartic acid and glutamic acid more than the GABA release. Generally the potassium-induced release was much more resistant to the lidocaine action than the veratrine-induced release. Among the neurotransmitters examined, the aspartic acid release was most prone to the lidocaine action, while the GABA release was most resistant. Concentrations of lidocaine below 1 mM did not significantly change the GABA and glutamic acid receptor binding and uptake. These results indicate that the blocking of sodium channels by lidocaine can result in the selective depression of the GABA release. This may result in unlimited excitation of the central nervous system.

  • PDF

Anaylsis of ${\gamma}$-aminobutyric Acid (GABA) Content in Germinated Pigmented Rice (발아 유색미의 GABA(${\gamma}$-aminobutyric acid) 함량 분석)

  • An, Mi-Kyoung;Ahn, Jun-Bae;Lee, Sang-Hwa;Lee, Kwang-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.632-636
    • /
    • 2010
  • The level of ${\gamma}$-aminobutyric acid (GABA) in pigmented rice was quantitatively and qualitatively determined by high pressure liquid chromatography/fluorescence detection (HPLC/FLD). In this study, the recovery rate and limit of detection (LOD) of GABA were 122.4${\pm}$2.4% and 0.23 ${\mu}g/g$, respectively. The geminating pigmented rice samples, which were harvested in Paju, Korea, were soaked in water at $18^{\circ}C$ for 20 hr. After soaking, the samples were germinated at $30^{\circ}C$ for about 24 hr. GABA content was highest (293.0 ${\mu}g/g$) in the germinated red rice. Furthermore, GABA levels in the germinated rice increased significantly by up to 11.1 and 24.7-fold as compared to non-germinated rice and milled rice, respectively. The GABA concentrations of non-germinated rice, with the exception of red rice, were significantly higher than those of milled rice by 7.6-20.6-fold.

Differential Role of Central GABA Receptors in Nociception of Orofacial Area in Rats

  • Lee, Ah-Ram;Lim, Nak-hyung;Kim, Hye-Jin;Kim, Min-Ji;Ju, Jin-Sook;Park, Min-Kyoung;Lee, Min-Kyung;Yang, Kui-Ye;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.117-125
    • /
    • 2015
  • The present study investigated the role of central $GABA_A$ and $GABA_B$ receptors in orofacial pain in rats. Experiments were conducted on Sprague-Dawley rats weighing between 230 and 280 g. Intracisternal catheterization was performed for intracisternal injection, under ketamine anesthesia. Complete Freund's Adjuvant (CFA)-induced thermal hyperalgesia and inferior alveolar nerve injury-induced mechanical allodynia were employed as orofacial pain models. Intracisternal administration of bicuculline, a $GABA_A$ receptor antagonist, produced mechanical allodynia in naive rats, but not thermal hyperalgesia. However, CGP35348, a $GABA_B$ receptor antagonist, did not show any pain behavior in naive rats. Intracisternal administration of muscimol, a $GABA_A$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. On the contrary, intracisternal administration of bicuculline also attenuated the mechanical allodynia in rats with inferior alveolar nerve injury. Intracisternal administration of baclofen, a $GABA_B$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. In contrast to $GABA_A$ receptor antagonist, intracisternal administration of CGP35348 did not affect either the thermal hyperalgesia or mechanical allodynia. Our current findings suggest that the $GABA_A$ receptor, but not the $GABA_B$ receptor, participates in pain processing under normal conditions. Intracisternal administration of $GABA_A$ receptor antagonist, but not $GABA_B$ receptor antagonist, produces paradoxical antinociception under pain conditions. These results suggest that central GABA has differential roles in the processing of orofacial pain, and the blockade of $GABA_A$ receptor provides new therapeutic targets for the treatment of chronic pain.

${\gamma}$-Aminobutyric Acid Production and Glutamate Decarboxylase Activity of Lactobacillus sakei OPK2-59 Isolated from Kimchi (김치유래 Lactobacillus sakei OPK2-59의 ${\gamma}$-Aminobutyric Acid 생성 및 Glutamate Decarboxylase 활성)

  • Yu, Jin-Ju;Oh, Suk-Heung
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.316-322
    • /
    • 2011
  • Lactobacillus sakei OPK2-59 isolated from kimchi was found to have ${\gamma}$-aminobutyric acid (GABA) producing ability and glutamate decarboxylase (GAD) activity. When the Lactobacillus sakei OPK2-59 was cultured in MRS broth with 59.13 mM and 177.40 mM monosodium glutamate (MSG), the optimum temperature range and pH for growth were $25-37^{\circ}C$ and pH 6.5, respectively. GABA conversion rates in MRS broth with 59.13 mM and 177.40 mM MSG were 99.58% and 31.00%, respectively at $25^{\circ}C$ and 48 h of cultivation. By using the cell free extract of Lactobacillus sakei OPK2-59, MSG was converted to GABA and the conversion rate was 78.51% at $30^{\circ}C$, pH 5. Conversion of MSG to GABA was enhanced by adding salts such as $CaCl_2$, $FeCl_3$, $MgCl_2$. These data suggest that the ability of Lactobacillus sakei OPK2-59 to produce GABA results from the activity of GAD in the cells and GABA conversion by the cell extract containing GAD can be enhanced by $CaCl_2$, $FeCl_3$, $MgCl_2$.

Enhancement of γ-aminobutyric Acid Production by Combination of Barley Leaf and Corn Silk and Its Fermentation with Lactic Acid Bacteria (보리 잎과 옥수수 수염의 혼합과 유산균 발효를 이용한 γ-aminobutyric acid 생산 증진)

  • Kim, Hyung-Joo;Yoon, Young-Geol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.171-185
    • /
    • 2017
  • ${\gamma}$-aminobutyric acid (GABA) is a non-proteinogenic amino acid biosynthesized through decarboxylation of L-glutamic acid by glutamic acid decarboxylase. GABA is believed to play a role in defense against stress in plants. In humans, it is known as one of the major inhibitory neurotransmitters in the central nervous system, exerting anti-hypertensive and anti-diabetic effects. In this report, we wanted to enhance the GABA production from the barley leaf and corn silk by culturing them with lactic acid bacteria (LAB). The barley leaf and corn silk were mixed with various weight combinations and were fermented with Lactobacillus plantarum in an incubator at $30^{\circ}C$ for 48 h. After extracting the fermented mixture with hot water, we evaluated the GABA production by thin layer chromatography and GABase assay. We found that the fermented mixture of the barley leaf and corn silk in a nine to one ratio contained a higher level of GABA than other ratios, meaning that the intermixture and fermentation technique was effective in increasing the GABA content. We also tested several biological activities of the fermented extracts and found that the extracts of the fermented mixture showed improved antioxidant activities than the non-fermented extracts and no indication of cytotoxicity. These results suggest that our approach on combining the barley leaf and corn silk and its fermentation with LAB could lead to the possibility of the development of functional foods with high levels of GABA content and improved biological activities.

Changes in GABA Content of Selected Specialty Rice After Germination (발아에 따른 일부 특수미의 GABA 함량 변화)

  • Choi, Youngmin;Jeon, Geonuk;Kong, Suhyun;Lee, Junsoo
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.154-158
    • /
    • 2009
  • The purposes of this work were to investigate the changes in GABA content of six different rice cultivars along with viatmin E content and antioxidant activity after germination. Brown rice was soaked for 24 hr at 25$^{\circ}C$ and then germinated at 37$^{\circ}C$ for 48 hr. The content of GABA and vitamin E in the rice samples was measured by using spectrophotometeric and HPLC methods, respectively. Antioxidant activity was measured by ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging methods. GABA and vitamin E contents were significantly increased after germination while no significant change in the antioxidant activity was observed. Among the samples tested, Geunnun cultivar contained the highest GABA content before and after germination. On the other hand, Sinmyungheugchal cultivar showed the highest content of vitamin E and antioxidant activity compared to other rice cultivars. In conclusion, the germinated rice with high GABA content can be used for a functional ingredient in rice processing industry.

Changes in physical characteristics of white pan bread by addition of GABA rice bran and its extract (GABA 미강 및 미강추출물 첨가에 의한 식빵의 텍스처 및 저장성의 변화)

  • Oh, Su-Jin;Kwon, Young-Hoi;Shin, Hae-Hun;Kim, Hyun Soo;Choi, Hee-Don;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.614-620
    • /
    • 2018
  • A rice bran physically treated to increase the residual gamma amino butyric acid (GABA) content (200 mg/100 g) or its hot-water extract (200 mg/100 g) was added into a white pan bread, and changes in the physical properties including color, and volume and texture changes during storage at room temperature were examined. The addition of bran powders had negative effects on bread quality and storage stability whereas that of rice bran extract (RBE) improved the storage stability of bread. The lightness of bread crumbs decreased but the volume of bread slightly increased after addition of the RBE. The increase in crumb hardness during storage was retarded by the RBE addition. The residual concentration of GABA in bread was increased 38-fold when 20% of RBE was added. The addition of RBE to white pan bread improved the resistance to staling and health-promoting function because of GABA.

Establishment of a Simple and Rapid Method for Quantitative Determination of -Aminobutyric Acid Using 1H NMR and Production of γ-Aminobutyric Acid in Cell Suspension Cultures of Coriandrum sativum L. (1H NMR에 의한 γ-Aminobutyric Acid의 간단하고 신속한 정량분석법 확립과 고수 (Coriandrum sativum L.) 현탁배양세포로부터 γ-Aminobutyric Acid의 생산)

  • Kim, Suk-Weon;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • This study describes a simple and rapid method for quantitative determination of $\gamma$-aminobutyric acid (GABA) using $^1H$ NMR spectroscopy from whole cell extracts of plant suspension cultures. When 9 cell lines derived from 8 species of higher plants maintained in liquid Marashige and Skoog (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) were subjected to $^1H$ NMR, a cell line of Coriandrum sativum L. exhibited the highest level of GABA. The level reached up to 16.9 mg/dry wt when cells were cultured in MS medium supplemented with 0.5 mg/L 2,4-D after 3 weeks of incubation. The method for quantitative determination of GABA using $^1H$ NMR established in this study could be applied to high-throughput screening of various plant resources for GABA production and the cell suspension culture system of C. sativum could be further developed for commercial production of GABA.