Browse > Article
http://dx.doi.org/10.11625/KJOA.2017.25.1.171

Enhancement of γ-aminobutyric Acid Production by Combination of Barley Leaf and Corn Silk and Its Fermentation with Lactic Acid Bacteria  

Kim, Hyung-Joo (중원대학교 의생명과학과)
Yoon, Young-Geol (중원대학교 의생명과학과)
Publication Information
Korean Journal of Organic Agriculture / v.25, no.1, 2017 , pp. 171-185 More about this Journal
Abstract
${\gamma}$-aminobutyric acid (GABA) is a non-proteinogenic amino acid biosynthesized through decarboxylation of L-glutamic acid by glutamic acid decarboxylase. GABA is believed to play a role in defense against stress in plants. In humans, it is known as one of the major inhibitory neurotransmitters in the central nervous system, exerting anti-hypertensive and anti-diabetic effects. In this report, we wanted to enhance the GABA production from the barley leaf and corn silk by culturing them with lactic acid bacteria (LAB). The barley leaf and corn silk were mixed with various weight combinations and were fermented with Lactobacillus plantarum in an incubator at $30^{\circ}C$ for 48 h. After extracting the fermented mixture with hot water, we evaluated the GABA production by thin layer chromatography and GABase assay. We found that the fermented mixture of the barley leaf and corn silk in a nine to one ratio contained a higher level of GABA than other ratios, meaning that the intermixture and fermentation technique was effective in increasing the GABA content. We also tested several biological activities of the fermented extracts and found that the extracts of the fermented mixture showed improved antioxidant activities than the non-fermented extracts and no indication of cytotoxicity. These results suggest that our approach on combining the barley leaf and corn silk and its fermentation with LAB could lead to the possibility of the development of functional foods with high levels of GABA content and improved biological activities.
Keywords
barley leaf; corn silk; GABA; lactic acid bacteria; ${\gamma}$-aminobutyric acid;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Min, O. J., B. R. Sharma, C. M. Park, and D. Y. Rhyu. 2011. Effect of Myadis stigma water extract on adipogenesis and blood glucose in 3T3-L1 adipocytes and db/db mice. Korean J. Pharmacogn. 42: 201-208.
2 Ohn, J. and J. H. Kim. 2012. Intake pattern and needs assessment for the development of web-contents on health functional foods according to age of adults. Korean J. Community Nutr. 17: 26-37.   DOI
3 Park, H. S., W. K. Kim, H. P. Kim, and Y. G. Yoon. 2015. The efficacy of lowering blood glucose levels using the extracts of fermented bitter melon in the diabetic mice. J. Appl. Biol. Chem. 58: 259-265.   DOI
4 Qui, T., H. Li, and Y. Cao. 2010. Pre-staining thin layer chromatography method for amino acid detection. African J. Biotechnol. 9: 8679-7681.
5 Tsukatani, T., T. Higuchi, and K. Matsumoto. 2005. Enzyme-based microtiter plate assay for ${\gamma}$-aminobutyric acid: Application to the screening of ${\gamma}$-aminobutyric acid-producing lactic acid bacteria. Anal. Chim. Acta 540: 293-297.   DOI
6 Yang, H. J., E. H. Kim, J. O. Park, J. E. Kim, and S. N. Park. 2009. Antioxidative activity and component analysis of fermented Melissa officinalis extracts. J. Soc. Cosmet. Scientists Korea 35: 47-55.
7 Yoo, H. J., S. H. Lee, D. S. Lee, and H. B. Kim. 2002. Antioxidant activity of fermented barley, wormwood, sea tangle, and soybean. Korean J. Microbiol. 38: 230-233.
8 Zhang, G. and A. W. Bown. 1997. The rapid determination of ${\gamma}$-aminobutyric acid. Phytochem. 44: 1007-1009.   DOI
9 An, M. K., J. B. Ahn, S. H. Lee, and K. G. Lee. 2010. Analysis of ${\gamma}$-aminobutyric acid (GABA) content in germinated pigmented rice. Korean J. Food Sci. 42: 632-636.
10 An, E. S. 2003. Chemical properties of corn silk and its bacteriocidal effects on food poisoning bacteria. Chonnam National University Master's thesis.
11 Cho, E. J., C. H. Hwang, and M. O. Yang. 2007. Changes in free amino acids and sensory evaluation of fermented tea (Camellia sinensis var. sinensis) according to the degree of fermentation. J. East Asian Soc. Dietary Life 17: 911-918.
12 Bae, M. O., H. J. Kim, Y. S. Cha, M. K. Lee, and S. H. Oh. 2009. Effects of kimchi lactic acid bacteria Lactobacillus sp. OPK2-59 with high GABA producing capacity on liver function improvement. J. Korean Soc. Food Sci. Nutr. 38: 1499-1505.   DOI
13 Bondet, V., W. Brand-williamas, and C. Berset. 1997. Kinetics and mechanisms of antioxidant activity using the DPPH․ free radical method. Lebensm.-Wiss. u.-Technol. 30: 609-615.   DOI
14 Chang, J. S., B. S. Lee, Y. G. Kim. 1992. Changes in ${\gamma}$-aminobutyric acid (GABA) and the main constituents by a treated conditions and of anaerobically treated green tea leaves. Korean J. Food Sci. Technol. 24: 315-319.
15 Cho, S. C., D. H. Kim, C. S. Park, J. H. Koh, Y. R. Pyun, and M. C. Kook. 2012. Production of GABA-rich tomato paste by Lactobacillus sp. Fermentation. Korean J. Food Nutr. 25: 26-31.   DOI
16 De Vuyst, L., and F. Leroy. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13: 194-199.   DOI
17 Di Cagno, R., F. Mazzacane, C. G. Rizzello, M. De Angelis, G. Giuliani, M. Meloni, B. De Servi, and M. Gobbetti. 2010. Synthesis of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 86: 731-741.   DOI
18 Jeon, G. U., M. Y. Lee, J. Yoon, S. Jang, M. Jung, H. S. Jeong, and J. Lee. 2010. Effects of heat treatment and selected medicinal plant extracts on GABA content after germination. J. Korean Soc. Food Sci. Nutr. 39: 154-158.   DOI
19 Dung Pham, V., S. Somasundaram, S. H. Lee, S. J. Park, and S. H. Hong. 2016. Efficient production of ${\gamma}$-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J. Ind. Microbiol. Biotechnol. 43: 79-86.   DOI
20 Hudec, J., L'. Kobida, M. Canigova, M. Lacko-Bartosova, O. Lozek, P. Chlebo, J. Mrazova, L. Ducsay, and J. Bystricka. 2015. Production of ${\gamma}$-aminobutyric acid by microorganisms from different food sources. J. Sci. Food Agric. 95: 1190-1198.   DOI
21 Kim, D. C., D. W. Kim, S. D. Lee, and M. J. In. 2006. Preparation of barley leaf powder tea and its quality characteristics. J. Korean Soc. Food Sci. Nutr. 35: 734-737.   DOI
22 Kim, E. A., S. Y. Mann, S. I. Kim, G. Y. Lee, D. Y. Hwang, H. J. Son, C. Y. Lee, and D. S. Kim. 2013. Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi. Korean J. Food Preserv. 20: 705-711.   DOI
23 Kim, K. T., H. M. Seog, S. S. Kim, H. D. Hong, Y. T. Lee, and J. G. Kim. 1995. Chemical composition of barley leaves from different varieties. Agr. Chem. Biotechnol. 38: 431-434.
24 Kim, S. L., M. J. Kim, Y. Y. Lee, G. H. Jung, B. Y. Son, J. S. Lee, Y. U. Kwon, and Y. I. Park. 2014. Isolation and identification of flavonoids from corn silk. Korean J. Crop Sci. 59: 435-444.   DOI
25 Kim, S. L., C. H. Park, E. H. Kim, H. S. Hur, and Y. K. Son. 2000. Physicochemical characteristics of corn silk. Korean J. Crop Sci. 45: 392-399.
26 Lee, S. H. 2015. Development of mulberry-leaf tea containing ${\gamma}$-aminobutyric acid (GABA) by anaerobic treatments. Korean J. Food Sci. Technol. 47: 652-657.   DOI
27 Ku, K. M., S. K. Kim, and Y. H. Kang. 2009. Antioxidant activity and functional components of corn silk (Zea may L.). Korean J. Plant Res. 22: 323-329.
28 Lee, G. Y., S. I. Kim, M. G. Jung, J. H. Seong, Y. G. Lee, H. S. Kim, H. S. Chung, B. W. Lee, and D. S. Kim. 2014. Characteristics of chungkookjang that enhance the flavor and GABA content in a mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383. J. Life Sci. 24: 1102-1109.   DOI
29 Lee, M. G., G. P. Choe, I. H. Lyu, G. Y. Lee, C. Y. Yu, and H. Y. Lee. 2004. Enhanced immune activity and cytotoxicity of Artemisia capillaris Thunb. extracts against human cell lines. Korean J. Medicinal Crop Sci. 12: 36-42.