• Title/Summary/Keyword: fuzzy sliding

Search Result 258, Processing Time 0.028 seconds

Fuzzy Sliding Mode Control of Nonlinear System Based on T-S Fuzzy Dynamic Model (T-S 퍼지 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드 제어)

  • Yoo, Byung-Kook;Yang, Keun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.112-117
    • /
    • 2004
  • This paper suggests the design and analysis of the fuzzy sliding mode control for a nonlinear system using Takagi-Sugeno(T-S) fuzzy model. In this control scheme, identifying procedure that the input gain matrices in a T-S fuzzy model are manipulated into the same one is needed. The input disturbances generated in the identifying procedure are resolved by incorporating the disturbance treatment method of the conventional sliding mode control. The proposed control strategy can also treat the input disturbances that can not be linearized in the linearization procedure of T-S fuzzy modeling. Design example for the nonlinear system, an inverted pendulum on a cart, demonstrates the utility and validity of the proposed control scheme.

Direct Adaptive Fuzzy Sliding Mode Control for Under-actuated Uncertain Systems

  • Su, Shun-Feng;Hsueh, Yao-Chu;Tseng, Cio-Ping;Chen, Song-Shyong;Lin, Yu-San
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.240-250
    • /
    • 2015
  • The development of the control algorithms for under-actuated systems is important. Decoupled sliding mode control has been successfully employed to control under-actuated systems in a decoupling manner with the use of sliding mode control. However, in such a control scheme, the system functions must be known. If there are uncertainties in those functions, the control performance may not be satisfactory.In this paper, the direct adaptive fuzzy sliding mode control is employed to control a class of under-actuated uncertain systems which can be regarded as a combination of several subsystems with one same control input. By using the hierarchical sliding control approach, a sliding control law is derived so as to make every subsystem stabilized at the same time. But, since the system considered is assumed to be uncertain, the sliding control law cannot be readily facilitated. Therefore, in the study, based on Lyapunov stable theory a fuzzy compensator is proposed to approximate the uncertain part of the sliding control law. From those simulations, it can be concluded that the proposed compensator can indeed cope with system uncertainties. Besides, it can be found that the proposed compensator also provide good robustness properties.

Fuzzy-Sliding-Sector Control for Chattering Reduction (채터링 감소를 위한 퍼지 슬라이딩 섹터 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.211-216
    • /
    • 2009
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. In this paper, fuzzy control with time-varying boundary layer using the sliding sector theory with continued input function in the sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. Computer simulation for inverted pendulum results in elimination of the chattering phenomenon.

  • PDF

Fuzzy sliding mode controller design for improving the learning rate (퍼지 슬라이딩 모드의 속도 향상을 위한 제어기 설계)

  • Hwang, Eun-Ju;Cho, Young-Wan;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.747-752
    • /
    • 2006
  • In this paper, the adaptive fuzzy sliding mode controller with two systems is designed. The existing sliding mode controller used to $approximation{\^{u}}(t)$ with discrete sgn function and sat function for keeping the state trajectories on the sliding surface[1]. The proposed controller decrease the disturbance for uncertain control gain and This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems ate used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties ate demonstrated. Futhermore, fuzzy tuning improve tracking abilities by changing some sliding conditions. In the traditional sliding mode control, ${\eta}$ is a positive constant. The increase of ${\eta}$ has led to a significant decrease in the rise time. However, this has resulted in higher overshoot. Therefore the proposed ${\eta}$ tuning AFSMC improve the performances, so that the controller can track the trajectories faster and more exactly than ordinary controller. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

Discrete-Time Sliding Mode Control with SIIM Fuzzy Adaptive Switching Gain

  • Chai, Chang-Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • This paper focuses on discrete-time sliding mode control with SIIM fuzzy adaptive switching gain. The adaptive switching gain is calculated using the simplified indirect inference fuzzy logic. Two fuzzy inputs are the normal distance from the present state trajectory to the switching function and the distance from the present state trajectory to the equilibrium state. The fuzzy output $f_{out}$(k) out f k is used to adjust the speed the adaptation law depending on the location of the state trajectory. The simulation results showed that the proposed method had no chattering in case of uncertain parameter without disturbance. Moreover the convergent rate of the switching gain was faster and more stable even in case of disturbance.

An Adaptive Fuzzy Sliding Mode Controller for Robot Manipulators

  • Seo, Sam-Jun;Park, Gwi-Tae;Kim, Dongsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.1-162
    • /
    • 2001
  • In this paper, the adaptive fuzzy system is used as an adaptive approximator for robot nonlinear dynamic. A theoretical justification for the adaptive approximator is proving that if the representive point(RP or switching function) and its derivative in sliding mode control are used as the inputs of the adaptive fuzzy system, the adaptive fuzzy system can approximate robot nonlinear dynamics in the neighborhood of the switching surface. Thus the fuzzy controller design is greatly simplified and at the same time, the fuzzy control rule can be obtained easily by the reaching condition. Based on this, a new method for designing an adaptive fuzzy control system based on sliding mode is proposed for the trajectory tracking control of a robot with unknown nonlinear dynamics.

  • PDF

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

An Indirect Decoupled Adaptive Fuzzy Sliding-Mode Control through width adaptation

  • Kim, Dowoo;Yang, Haiwon;Han, Hongsuck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.62.4-62
    • /
    • 2002
  • $\textbullet$ Contents 1. Introduction $\textbullet$ Contents 2. System Description $\textbullet$ Contents 3. Decoupled Sliding Mde Control $\textbullet$ Contents 4. Decoupled Adaptive Fuzzy Sliding Mode Control through width adaptation $\textbullet$ Contents 5. Simulation Result $\textbullet$ Contents 6. Conclusion

  • PDF

Control of Hydraulic Excavator Using Self Tuning Fuzzy Sliding Mode Control (자기 동조형 퍼지 슬라이딩 모드 제어를 이용한 유압 굴삭기의 제어)

  • Kim Dongsik;Kim Dongwon;Park Gwi-Tae;Seo Sam-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.160-166
    • /
    • 2005
  • In this paper, to overcome drawbacks of FLC a self tuning fuzzy sliding mode controller is proposed, which controls the position of excavator's attachment, which can be regarded as an ill-defined system. It is reported that fuzzy logic theory is especially useful in the control of ill-defined system. It is important in the design of a FLC to derive control rules in which the system's dynamic characteristics are taken into account. Control rules are usually established using trial and error methods. However, in the case where the dynamic characteristics vary with operating conditions, as in the operation of excavator attachment, it is difficult to find out control rules in which all the working condition parameters are considered. Experiments are carried out on a test bed which is built around a commercial Hyundai HX-60W hydraulic excavator. The experimental results show that both alleviation of chattering and performance are achieved. Fuzzy rules are easily obtained by using the proposed method and good performance in the following the desired trajectory is achieved. In summary, the proposed controller is very effective control method for the position control of the excavator's attachment.

A New Design Method of Sliding Mode Fuzzy Controller with Robust and fast Performance (강인성과 응답 성능을 고려한 슬라이딩모드 퍼지 제어기 설계에 관한 연구)

  • 박창우;이장욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.425-428
    • /
    • 1998
  • This paper proposes a new fuzzy controller using variable structure control theory. In this paper, after the time-varying fuzzy sliding surface is designed, the fuzzy rules are defined based on the variable structure control theory. This design method makes the fuzzy controller design more structured and can guarantee the stability and robustness of the fuzzy controller and overcome the shortcoming of the variable structure system. Through computer simulation and experiment of nonlinear inverted pendulum system, this thesis demonstrate that system has the robustness against disturbance and modelling error, and the tracking performance of it is improved.

  • PDF