• Title/Summary/Keyword: fuzzy set model

Search Result 342, Processing Time 0.02 seconds

Control of Glucose Concentration in a Fed-Batch Cultivation of Scutellaria baicalensis G. Plant Cells a Self-Organizing Fuzzy Logic Controller

  • Choi, Jeong-Woo;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.739-748
    • /
    • 2001
  • A self-organizing fuzzy logic controller using a genetic algorithm is described, which controlled the glucose concentration for the enhancement of flavonoid production in a fed-batch cultivation of Scutellaria baicalensis G. plant cells. The substrate feeding strategy in a fed-batch culture was to increase the flavonoid production by using the proposed kinetic model. For the two-stage culture, the substrate feeding strategy consisted of a first period with 28 g/I of glucose to promote cell growth, followed by a second period with 5 g/I of glucose to promote flavonoid production. A simple fuzzy logic controller and the self-organizing fuzzy logic controller using a genetic algorithm was constructed to control the glucose concentration in a fed-batch culture. The designed fuzzy logic controllers were applied to maintain the glucose concentration at given set-points of the two-stage culture in fed-batch cultivation. The experimental results showed that the self-organizing fuzzy logic controller improved the controller\`s performance, compared with that of the simple fuzzy logic controller. The specific production yield and productivity of flavonoids in the two-stage culture were higher than those in the batch culture.

  • PDF

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

Fuzzy-technique-based expert elicitation on the occurrence probability of severe accident phenomena in nuclear power plants

  • Suh, Young A;Song, Kiwon;Cho, Jaehyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3298-3313
    • /
    • 2021
  • The objective of this study is to estimate the occurrence probabilities of severe accident phenomena based on a fuzzy elicitation technique. Normally, it is difficult to determine these probabilities due to the lack of information on severe accident progression and the highly uncertain values currently in use. In this case, fuzzy set theory (FST) can be best exploited. First, questions were devised for expert elicitation on technical issues of severe accident phenomena. To deal with ambiguities and the imprecision of previously developed (reference) probabilities, fuzzy aggregation methods based on FST were employed to derive the occurrence probabilities of severe accidents via four phases: 1) choosing experts, 2) quantifying weighting factors for the experts, 3) aggregating the experts' opinions, and 4) defuzzifying the fuzzy numbers. In this way, this study obtained expert elicitation results in the form of updated occurrence probabilities of severe accident phenomena in the OPR-1000 plant, after which the differences between the reference probabilities and the newly acquired probabilities using fuzzy aggregation were compared, with the advantages of the fuzzy technique over other approaches explained. Lastly, the impact of applying the updated severe accident probabilities on containment integrity was quantitatively investigated in a Level 2 PSA model.

Design on Fult Diagnosis System based on Dynamic Fuzzy Model (동적포지모델기반 고장진단 시스템의 설계)

  • 배상욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2000
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the unknown nonlinear system, which can detect and isolate process faults continuously over all ranges of operating condition. The dynamic behavior of a nonlinear process is represented by a set of local linear models. The parameters of the DFM are identified by an on-line methods. The residual vector of the FDI system is consisted of the parameter deviations from nominal model and the set of grade of membership values indicating the operating condition of the nonlinear process. The detection and isolation of faults are performed via a neural network classifier that are learned the relationship between the residual vector and fault type. We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

Analytic Study of Acquiring KANSEI Information Regarding the Recognition of Shape Models

  • Wang, Shao-Chi;Hiroshi Kubo;Hiromitsu Kikita;Takashi Uozumi;Tohru Ifukube
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.266-269
    • /
    • 2002
  • This paper explores a fundamental study of acquiring the users' KANSEI information regarding the recognition of shape models. Since there are many differences such as background differences and knowledge differences among users, they will produce different evaluations based on their KANSEI even when an identical shape model is presented. Cluster analysis is proved to be available for catching a group tendency and for constructing a mapping relation between a description of the shape model and the HANSEl database. In order to investigate an analogical relation and a mutual influence in our consciousness, first, we made a questionnaire that asked subjects to represent images having different colors and shape cones by using 4 pairs of adjectives (KANSEI words). Next, based on the cluster analysis of the questionnaire using a fuzzy set theory, we proposed a hypothesis showing how the analogical relation and the mutual influence work in our mind while viewing the shape models. Furthermore, how the properties of KANSEI depend on their descriptions was also investigated by virtue of the cluster analysis. This work will be valuable to construct a personal KANSEI database regarding the Shape Model Processing System.

  • PDF

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론)

  • 조상엽;김기석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

  • PDF

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

A Neuro-Fuzzy Approach to Integration and Control of Industrial Processes:Part I

  • Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.58-69
    • /
    • 1998
  • This paper introduces a novel neuro-fuzzy system based on the polynomial fuzzy neural network(PFNN) architecture. The PFNN consists of a set of if-then rules with appropriate membership functions whose parameters are optimized via a hybrid genetic algorithm. A polynomial neural network is employed in the defuzzification scheme to improve output performance and to select appropriate rules. A performance criterion for model selection, based on the Group Method of DAta Handling is defined to overcome the overfitting problem in the modeling procedure. The hybrid genetic optimization method, which combines a genetic algorithm and the Simplex method, is developed to increase performance even if the length of a chromosome is reduced. A novel coding scheme is presented to describe fuzzy systems for a dynamic search rang in th GA. For a performance assessment of the PFNN inference system, three well-known problems are used for comparison with other methods. The results of these comparisons show that the PFNN inference system outperforms the other methods while it exhibits exceptional robustness characteristics.

  • PDF

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF