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ABSTRACT

This paper introduces a novel neuro-fuzzy system based on the polynomial fuzzy neural network
(PFNN) architecture. The PFNN consists of a set of if-then rules with appropriate membership
functions whose parameters are optimized via a hybrid genetic algorithm. A polynomial neural network
is employed in the defuzzification scheme to improve output performance and to select appropriate
rules. A performance criterion for model selection, based on the Group Method of Data Handling,
is defined to overcome the overfitting problem in the modeling procedure. The hybrid genetic
optimization method, which combines a genetic algorithm and the Simplex method, is developed to
increase performance even if the length of a chromosome is reduced. A novel coding scheme is
presented to describe fuzzy systems for a dynamic search range in the GA. For a performance
assessment of the PFNN inference system, three well-known problems are used for comparison with
other methods. The results of these comparisons show that the PFNN inference system outperforms the
other methods while it exhibits exceptional robustness characteristics.

1. Introduction

An industrial process is generally composed of
several constituent subprocesses that produce an output.
The three primary difficulties in industrial processes are:
integrating all of the constituent
determining the optimal operating conditions in each
subprocess that maximize productivity, and controlling
the system. A model of a complex process may be

subprocesses,

required for that purpose. For example, it could be
used to simulate the real process or it could be used
to design a control system. However, if the process is
too complex to be described by a few idealized
physical laws, or there is not enough knowledge
available, then an accurate model may not be possible
to develop. Indeed, considerable experimental and
theoretical efforts are often required to derive even the
most basic representation. This is especially the case
when the process is highly nonlinear and has a large
number of variables.

Fuzzy systems and neural networks (NNs) have
been investigated along different lines since they are
derived from different fields. Both can best be
described mathematically as function approximators

[13,20]. A neuro-fuzzy system can be viewed as a
feed-forward network that employs a back- propagation
algorithm for training purposes. It is used to identify
nonlinear dynamic systems. The method in [33] employs
a back-propagation algorithm in order to adjust its
parameters. The inference system in [11] is based on the
Takagi, Sugeno, and Kang fuzzy model as described in
[26,28], also known as the TSK fuzzy model. The
method in [16] is similar to radial basis function (RBF)
neural networks[3]. The approach in [15] is based on the
TSK fuzzy model and adopts a genetic algorithm (GA)
to determine the premise and consequent parameters as
well as the number of fuzzy rules.

In this paper, a polynomial fuzzy neural network
(PFNN) modeling method is proposed to improve the
performance of the fuzzy inference system. A
performance criterion is defined to overcome the
overfitting problem in the modeling procedure. The
hybrid genetic optimization method is developed to
increase performance even if the length of a
chromosome is reduced. A novel coding scheme is
presented to describe fuzzy systems for a flexible
search range in the GA. For a performance assessment
of the PFNN inference system, three well-known

*This paper was supported by the Pusan National University Research Fund, 1998.
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problems are used for comparison with other methods.

This paper is organized as follows: Section 2
introduces the PFNN based upon the performance
criterion for model selection. Section 3 describes the
hybrid genetic optimization method combined with
the dynamic coding in a genetic algorithm. Section 4
presents the performance test and evaluation for the
proposed modeling approach. Finally, conclusions are
summarized in Section 5.

2. Neuro-Fuzzy Modeling

Fuzzy model identification that is based on fuzzy
implications and reasoning is one of the most
important aspects of fuzzy system theory because of
its simple form as a tool and its power for representing
highly nonlinear relations. Using qualitative expressions,
graded numbering, and experimental data, the per-
formance index or yield can be incorporated into a
fuzzy model, a fuzzy objective function, or a decision
making model{12,30,31].

In this section first, a neuro-fuzzy inference system
based on the PFNN architecture is presented. Then a
performance criterion for model selection is introduced
to prevent the overfitting problem.

2.1 Polynomial Fuzzy Neural Network

The proposed neuro-fuzzy inference system is
based on the PFNN architecture. The PFNN consists
of a set of if-then rules with appropriate membership
functions whose parameters are optimized via a
hybrid genetic algorithm. A polynomial neural network
[5,25] is employed in the defuzzification scheme to
improve output performance and to select rules.

Fig. 1 depicts the basic structure of the polynomial

PNN Section

Layer
Fig. 1. Polynomial fuzzy neural network (PFNN)
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fuzzy neural network. A basic assumption is that the
neuro-fuzzy system under consideration has n inputs,
X, i=1, -, n, and one output § . The same procedure
described for single-output systems can be applied to
multi-output systems. Each input has m; membership
functions. The total number of rules, r, is equal to r=
T12,m;. A typical rule with a fuzzy if-then structure is
expressed by

Rulegy: If xy is Ay and -+ andd
6))

X, is Ar, then y; is p;

where x;, j=1, ---, n, are non-fuzzy input variables, A,f‘,
1 <ix<my, are fuzzy variables related to the k-th input,
and p;, i=1, ---, r, are constants in the consequent.

Layer 1: The nodes in this layer are adaptive
nodes with node outputs defined by

Ol,p=ﬂAij(xi):i=1"","’j=1"“’mi @)
where O, represents the output of node p in layer 1,
x; is the non-fuzzy input to the node, and A/ is
associated with the j-th fuzzy variable in the i-th
input. The number of nodes is Y.2;m;. The outputs of
this layer, O,,, are the membership values of the
premise part. Here, the membership functions for A/,
Maj(x), can be any appropriately parameterized
membership functions such as triangular, trapezoidal,
Gaussian, etc. For example, A/ can be characterized
by a Gaussian membership function:

_(xi_cj)zl

e @

K, ;x5 c;, 0;) =exp
L

Layer 2: The nodes in layers 2 and 3 are
computational nodes that do not include adjustable
parameters. The nodes in layer 2 are T-norm operators
for the fuzzy AND. T-norm product operators multiply
the incoming signals and send the result to the next
layer. The operation in this layer is as follows:

Oz =wi= 11 1 (5)

)

where r is the number of rules and 1<j<m,, 1<i<r.
The output in layer 2, O,; represents the firing
strength or degree of fulfillment of a rule.
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Layer 3: The i-th node in this layer calculates a
normalized firing strength, which is the ratio of the i-
th rule's firing strength to the sum of all rules' firing
strengths:

Wi
~ ®)
Zj:l Wi
Layer 4: The i-th node in this layer is an adaptive
.-+, n. The outputs in

05, =w, =

node with parameters p;, i=1,
this layer are calculated by

O4,i =R, =w; - ©)

The outputs in this layer are used as inputs to the

Yi ="_Vi P

polynomial neural network (PNN). In fuzzy systems,
the next step following layer 4 is defuzzification,
where the overall output is computed as the sum of
the outputs from layer 4; i.e., the final output of the
fuzzy system is Y’ 0,. In this case, the output of
each rule is considered as an equally important part
in the defuzzification. However, in the PFNN model,
the outputs in layer 4, R;, are not directly used to
produce the overall output. These are considered as
inputs to the PNN.

The parameters in the adaptive nodes in layer 1
and layer 4 will be optimized by the method
discussed in Section 3.

A PNN is a feed-forward network that computes a
polynomial function of a set of parallel inputs to
generate an output. Ivakhnenko[9] describes an
approximation that is determined by successively
fitting polynomials and uses the mean squared error
at each layer to determine the best fit at that layer.
The right side of Fig. 1 illustrates how a PNN is
developed using the basic group method of data
handling (GMDH)[5].

A least-squares fit of the training data for the
function to be learned is determined for all pairs of
input wvariables, Rs, using polynomials of up to
second degree. A decision rule is used after the first
level to choose only
polynomials that provide the best fit to the training
data. The outputs of this reduced set of polynomials

of computations those

are then used as inputs to a second layer of the
model. Here again, all pairs of polynomials up to
second degree are tested, and only those that provide
the best fit are kept as inputs to the next layer. This
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procedure is continued until a stopping criterion is
satisfied, e.g., the present layer of polynomial outputs
provides a worse fit to the training data than the
previous one. At this point, for n layers, the output
polynomial contains terms of up to degree 2" in the
input variables, but the polynomial network's typical
combinatorial explosion of coefficients has been
avoided.

The polynomial network shown in Fig. 1 has r
inputs and two layers, and each two-input module
forms a quadratic polynomial. For example, the
output of the bottom left module is a function of the
inputs R,; and R;:

SR, Rr;a;))=ag+aR,_+a,R: +a;R,_ R,

+a4Rr2-1 +aSR’2 (7)

The decision rule module chooses the three best
fitting polynomials from the first layer and sends
them on to the second layer, where another set of
quadratic least-squares fitting operations is performed.
Choosing the best fitting polynomial from the second
layer gives rise to the final output § of degree four.
The proposed PFNN algorithm may provide the
following benefits:

(1) It reduces the number of adjustable parameters
in the consequent to r that is the number of rules;

(2) It employs the output of layer 4 for the
unbiased input candidate;

(3) It increases the accuracy through a mnew
defuzzification method. The output is more accurate
than the sum of the R; since the PNN gives a better
approximation than the sum of its inputs;

(4) It uses the dominant rules to infer the outputs.
The PNN selects several Rs from among all of the
Rss, thereby reducing the number of rules.

Example 1-—The simulation in [33] and [11] is
repeated here. The plant to be identified is governed
by the difference equation

y(k+1)=03y (k)}+0.6y (k-11+g (@ (k) ®

where the unknown function has the form g(u)=
0.6sin(mmu)+0.3sin(37mu)+0.1sin(57u). To identify the
plant, a series-parallel model described by the difference
equation
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Fig. 2. Back-propagation fuzzy system in Example 1: (a)
Outputs of the plant (solid line) nd the identification
model (dotted line). (b) The unknown function g
(- ) (solid line) and the estimated function f{-)
(dotted line).

§ (k+1) = 0.3y (k)+0.6y (k=Ly+ £ (u (k) ©

is used, where f{ - ) is the function implemented by
the PFNN. The identified output, $( - ), and f{ - ) are
compared with example 1 of [33] that adopts a back-
propagation fuzzy system (BPFS) identifier.

Figs. 2(a)~(b) show the output of the identified
model in BPFS with mean squared error (MSE)=
0.2148. Figs. 3(a)~(b) show the output of the
identified model in the PFNN scheme with MSE=
0.0361. Fig. 4 shows the output of layer 4, R;, in (6).
In this example, the number of rules is 20, but only

bLhbowaae
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Fig. 3. PFNN in Example 1: (a) Outputs of the plant
(solid line) and the identification model (dotted
line). (b) The unknown function g( - ) (solid line)
and the estimated function f{ - ) (dotted line).
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Fig. 4. Plot of R, (1<i<10), in Example 1. The values
of R; at i=1, 2, 6 and 8, are almost zeros.

R to Ry are displayed. It shows that the several rules
are not fired even though their parameters are
optimized. In the PFNN, these rules are filtered, and
the output is improved by the PNN.

2.2 Performance Criterion

One of the most common and difficult problems in
the empirical modeling arena is the question of when
to stop searching the free parameters or adding terms
to a model. The fitting error on the finite data set is
decreased by simply increasing the number of free
parameters in the model or the model order.

The goal of modeling is to obtain a predictive
model that generalizes across many such samples to
the universe at large, and not merely to the sample at
hand. We want our model to be as effective as
possible when we use it on future data, and not just
on the sample on which it was based.

The proposed performance criterion (PC) for a
model selection is based on the GMDH to minimize
the error and at the same time to prevent overfitting
of the empirical data set. As a proper criterion for the
verification of a fuzzy model, the observed data are
divided into two sets, N, for training and Nj for
testing purposes.

The performance criterion is calculated as

et =3 (4 £ G/,
i=1

e3 = 07 fo I /g ,
i=1
PC =el +e} +n(et ~e3})? (10)

where n, is the number of data points in the data set
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Fig. 5. Surface of the performance criterion: (a) 1n=0.5
and (b) n=1.0.

N., and y/ is the real output of data set Ny. fi(x”) is
the estimated output for the data set Nz from the
model identified using the data set Ny. 1 is a weight
factor on the difference between e,° and e,”. We want
to minimize the PC to find the best model for N, and
Ng. The partial derivatives of PC with respect to e;
and e, are as follows:

oPC

=4nei +2(1-2ne$)e, (11
de
aai C ~ dne3+2(1-2ned)e, 12)
2

Eq. (11) shows that the derivative of PC with
respect to e; is a function of e, and e,. Also, Egs. (11)
and (12) are symmetric. The final model based on
the PC is not overfitting the training data set but
satisfying both data sets. Figs. 5(a) and (b) are
surfaces of the performance criterion in (10) with n=
0.5 and n=1, respectively.

3. Fuzzy Optimization

Fuzzy optimization is defined as the process of ‘

finding the conditions that give the maximum or
minimum value of a cost function that consists of a
rule-based fuzzy model with its membership functions
as constraints. Fuzzy optimization is performed based
on a fuzzy model instead of a mathematical model. A
fuzzy objective function is not differentiable by its own
nature.

3.1 Hybrid Genetic Optimization
The advantages of a genetic algorithm are: it
searches from a set of designs and not from a single
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design; it is not derivative-based; it works with
discrete and continuous parameters; and it both
explores and exploits the parameter space[6]. The
major disadvantage of a genetic algorithm is the
excessive number of runs of the design code required
for convergence.

The search space in a GA is discretized by its
resolution. In the binary coding method, the bit
length L; and the corresponding resolution R; are
related by

_ UB,;-LB,

(13)
21

i

where UB; and LB; are the upper and lower bounds
of the parameter x; respectively. As a result, the
parameter set can be transformed into a binary string
(chromosome) with length [=3." L, where n is the
number of parameters to be optimized and L; is
different for each parameter. By adding k bits to the
parameters, the resolution is improved by approxi-
mately 2°X100%. On the other hand, the search
space is dramatically increased to (2°)" times. To
overcome this problem, a hybrid genetic optimi-
zation method that combines a GA with Nelder and
Mead's simplex method[22] is introduced. First, a GA
is used to search the coarse search space predefined
by (13) and to find the basin of attraction of the
global solution. Second, the result of the GA is
passed to a simplex method as an initial condition.
The simplex method is a fast and effective search
methodology for finding local minima. By defining
the resolution in each variable, the length of bits is
calculated from (13):

LB

UB, -LB,
L = nt [logy(——"+1)]

i

(14)

Example 2-Find the maximum values of the
function: Ax)=1+cos(x)/(1+0.01x°). Notice that the
optimal value of this function occurs at x=0, but
notice also that there are many local maxima which
are suboptimal. Represent a chromosome as a seven
bit binary string and scale the values between -20
and 20. The resolution is 0.31496. Therefore, the
nearest points to zero are +0.15748 with f- )=
1.98738, and these points are the best solution for
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GA. After
employing the simplex method, the maximum value
is found at x=0, and f{ - )=2

the given resolution found by the

3.2 Coding in Genetic Algorithms

The chromosome
problem solutions is a crucial aspect in determining
the success or failure of a GA. In a fuzzy system, the
coding of a fuzzy rule base implies coding the
membership functions. The main questions are: How
is the chromosome to be structured? How does this
structure encode string vectors?

A rule consists of fuzzy wvariables in which
parameters need to be optimized. For example, a

representation  of potential

Gaussian membership function has two parameters, ¢;
and ¢; in (3). In a n-input, one-output system, its
genotype, that is the complete sets of chromosomes,
is illustrated in Fig. 6. An n-bit binary number v can
represent a number w that falls in the range {LB, UB]
using the mapping

w=w+waim?#T (15)

The range of p; in (1) can be replaced with the
output range of the system to be modeled. From (3),
the upper bound of the variance, ;’%, in the MF can
be confined within a predefined range by

% —c,|
o= 16)
V2 |ing)|
where x;, which is the almost zero point in the MF,
satisfies

By o5 ¢ G = €. an

For example, for the degree of a membership
function to equal 107 at a distance d from its center,
the upper bound of the variance is determined by d/

(2\n(10)) from (16).

The range of p; and ¢; will be determined from the

- Xy s .o e Xmoeo - Y ..
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Fig. 6. Coding scheme for a fuzzy system.
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Fig. 7. Dynamic coding method for fuzzy rule bases.

GA, but the range of the center value, ¢;, in the MF
cannot be fixed. A fixed range for ¢; will degrade the
performance of the fuzzy system because it reduces
the search space in the GA or sometimes permits the
center values of the MFs to be swapped. These are
shown in Fig. 7 as Case 1 and Case 2, respectively.
In Case 1, the range of ¢; is fixed to produce a new
population in each generation without overlapping
LB; and UB; in (15). In Case 2, the range of ¢; is
fixed but LB; and UB; are overlapping.

To maximize the search space and prevent the
change of meaning in the MFs during the GA
operation, a dynamic coding method for ¢; will be
adopted. The range of ¢; in each generation is
dynamically varied from parents to children. Fig. 7
shows the dynamic coding method graphically.

We can generate the center values in MFs of the
new population from that of parents. We assume that
cy is the center value of the i-th present population
with j-th MF and ¢
population with j-th MF. In the dynamic coding

is the center vaiue of a new

method, the range of the new population is defined
as follows:

a; <c¥ < (21.2=l 2 ¢4
< cgew <QA4 Z:.’=2c,-j)/4

G <™ <(Z. k“ % Cij)/4
' < cf¥ < b, (18)

where [a;, b} is the universe of discourse in the
fuzzy variable of ¢; in (3). The dynamic coding
method maximizes the search space and does not
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permit any overlap behavior between MFs.
4. Performance Test and Evaluation

4.1 Box and Jenkins's Gas Furnace

This section presents an example of fuzzy modeling
of a dynamic process using gas furnace data. The
data set includes 296 successive input-output pairs of
observations, (u, y;), with a sampling interval of 9
seconds. The performance index (PI) of the model in
(19) is used for comparison with other identification
algorithms,

M=% 6®)-5 @P. (19)
k=1

The fuzzy model is assumed to take the form y(z)
=F(y(t-1),u(t-4)) in order to compare it with other
methods. The initial values used in the GA are as
follows: number of populations=100, number of
generations=300, crossover rate=0.75, and mutation
rate=0.001. Our method produces final membership
functions for the two inputs as shown in Fig. 8.
The output can be inferred from the complete rule
base shown in Table 1. Fig. 9 shows the model
behavior compared with the actual process. The PI

1

08 08f
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0.2} 02
0 0 oo
45 50 55 60
(b)
Fig. 8. () Final MFs on u(z-4) and (b) Final MFs on

y(t-1).

Table 1. Fuzzy rule base: bold face are identified after
PNN

yt-1)
NB NS ZE PS PB
NB | 475 | 571 | 594 | 64.1 | 60.1
NS | 566 | 55.7 | 415 | 575 | 511

c60r
]
Ess
8
[
850 _
Q
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Fig. 9. The PFNN model for the Box-Jenkins data.

Table 2. Comparison of fuzzy model with other models

Model Name Inputs I;?n:‘l:lzr I\éigrt(i;l
Box nd ARMA
Jenkins'[2] 6 todel 0202
Tong's
model29] Y14 19 0.469
Pedrycz's 25 0.776
r1)u(t-4 49 0478
modef21) YDA [81 0320
Xu's model[34] y(¢-1),u(t-4) 25 0.328
TSK
model[27]  YEDHES) 2 0.359
: y(t-1),u(z-4),
Linear
model'[28] “("32;1‘5(;-4), - 0.193
Modified TSK  y(+-1),u(t-3),
model[28] u(t-4) 6 0.190
Kupper's
model[14] YD 25 0.166
D, ik e’ 0
Saleem ¢
et al[23]
Y1) u(t-3), R
u(t-4) 0.403
Wang
etalpz)  YEDHED 5 0.158
Present model  y(t-1),u(t-4) 11 0.108

u(t-4y ZE 454 | 49.7 | 534 | 578 | 59.7

PS 46.6 | 318 | 57.7 | 66.7 | 75.0
PB 44.5 | 525 | 490 | 66.6 | 272

'Non fuzzy model. *Neural network model.

of the proposed method is computed as 0.108. The
excellent performance of the proposed model is
highlighted when compared with the other fuzzy
models in Table 2.

Table 3 shows a comparison of performance with
different optimization methods under the same fuzzy
model. From this table, the performance of a hybrid
optimization method combined with a PFNN is better
than that exhibited by other methods.
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Table 3. Comparison with optimization methods

Fuzzy model with PNN
Simplex Hybrid | Without
GA Method Method | fuzzy
without PNN | 00.125 0287  0.121 -
with PNN 0.159 0.177 0.108 | 0.186
15
1
- a5
05}
1
15
-1 V] 1
¥t2)
@ (b)

Fig. 10. (a) Iterated time series mapping from the initial
condition (0.1, 0.1). (b) Time series output
surface y(f) vs. y(t-1) X y(-2).

4.2 Nonlinear Time Series Modeling

A second benchmark problem is the time series
function described by the following second-order
nonlinear difference equation:

y(t) = (0.8-0.5 exp(—yX(t-1))) y (t-1)
~(0.3+0.9 exp(—y2(t—1))) y (t-2)
+sin(zy (t-D)H+(r)

where 7)(7) denotes the additive noise at time . When 7(f)
=0, this difference equation has an unstable equilibrium
at the origin and a globally attracting limit cycle, as
shown in Fig. 10. Different modeling methods, such as
CMAC and B-splines in [7], and RBF and MLP in {1,3],
have been applied to the same problem.

In this problem, n(f) has been assumed as a zero-
mean Gaussian white noise sequence with variance
0.01. A set of noisy training samples are collected
from (20). From an initial condition x(1)=(»(0), y(-1))
=0, 300 iterated noisy time series samples are
generated for training inputs and shown in Fig. 11.

After training with the proposed method, the identified
PFNN model is evaluated using two different tests. In
the first one, the normalized output error autocorrelation
function, ¢(k), is used to evaluate the approximation
ability over the training set, and is computed as follows:

(20)

3N ED )

D YN-0) @

o(k)
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y 1)

v

y(t2)

Fig. 11. The noisy iterated dynamics of the time series
from an initial position at the origin.

°
®

autocorrelation
-]

]

lag
Fig. 12. The autocorrelation of the prediction errors after
the 20th training cycle. The 9.5% confidence
band is shown by the dashed lines.

12

where k is the time lag, N is the training set size, and
&) is the output error at sample time ¢ over the
training set. When the identified model reproduces
the underlying function exactly, ¢(k) becomes an
impulse function at k=0; i.e., ¢(k) is equal to one at k
=0, and zero otherwise. Generally, when the training
set is large, the standard deviation of the correlation
estimate is 1A/N, and the 95% confidence limits are
+1.96/N . The autocorrelation plot for the PFNN
model is shown in Fig. 12, and the values lie within
the 80.6% confidence band rather than the 95%.
Thus, there has been an approximate improvement of
14.4%, whereas other methods are barely inside or
outside the 95% confidence band.

The
performance is to iterate the identified model from an
initial condition x(0)=(»(0), y(-1))=(0.1, 0.1), and
then plot the resulting dynamic behavior. The phase
plot and the time series surface plot are shown in Fig.
13. The basic shape of the limit cycle is a good
approximation to the true shape, and a five armed

second test for assessing the model's

interior spiral can be seen clearly.

4.3 Predicting Chaotic Dynamics
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y(t-1)
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Fig. 13. (a) The iterated dynamical behavior of the
PFNN from the initial condition x(1)=(0.1, 0.1)".
(b) The PFNN approximation of the true time
series surface.

The time series used in this simulation is generated
by the chaotic Mackey-Glass differential delay equation
defined as:

dxe(t) _ 0.2x(t-7)
dt 1+x19(—7)

0.1x(t) (22)

The Mackey-Glass equation was first proposed as
a model of white blood cell production[16] and
subsequently popularized in the nonlinear field due to
its richness in structure. The prediction of future
values of this time series is a benchmark problem
which has been considered by a number of new
adaptive computing network
approaches[8,24] radial basis function approaches[18],
and fuzzy reasoning algorithms[10,19].

The goal of the task is to predict known values at
some point in the future x=¢+P. The standard method
for this type of prediction is to create a mapping
from D points of the time series spaced A apart, that
is, x(+-(D-1)4), ---, x(t-4), x(£)), to a predicted future
value x(¢t+P). To allow comparison with earlier work
(Moody[18], Crowder[4], Jang[10], the values D=4
and A=P=6 were used. All other simulation settings
in this example were purposely arranged to be as

techniques: neural

close as possible to those reported in [4,10].

To obtain the time series values at each integer
point, we applied the fourth-order Runge-Kutta
method. From the Mackey-Glass time series x(t),
1000 input-output data pairs were extracted with the
following format:

[x(-18), x(t-12), x (¢ —6), x(t); x(t+6)] 23)

where =124 to 1123. The first 500 pairs (training
data set) were used for training the PFNN while the
remaining 500 pairs (validation data set) were used
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for validating the identified model. The number of
membership functions assigned to each input is
arbitrarily set to 2, so the number of rules is 16. Note
that the PFNN used here contains a total of 24 fitting
parameters, of which 8 are premise parameters and 16
are consequent parameters. The initial values used in
the GA are: population size=100, number of generations=
200, crossover rate=0.75, and mutation rate=0.001.
The identified final model has RMSE,,=0.0046 and
RMSE #4=0.0060, which is included in the top group
when compared with other approaches as explained
below. The desired and predicted values for both
training and checking data are essentially the same in
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200 300 400 500 600 700 80 %0 1000 1100
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Fig. 14. (a) Mackey-Glass time series from /=124 to 1123
and one-step ahead prediction; (b) prediction
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Fig. 15. Training and checking errors and PC of AR
model with different parameter numbers.
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Fig. 14(a); the differences are shown in Fig. 14(b).
As a comparison, we performed the same prediction
by using the auto-regressive (AR) model as follows:

x(1) = agax (t~6ytayx (-2 X 6)

+ +apx(t-n X 6) 24)

where there are n+1 fitting parameters a;, k=0 to n.
To search for the best AR model in terms of its
generalization capability, the number of parameters
was varied from 2 to 100. The AR model, based on
the PC in (10), was obtained when the parameter
number is 45 (n=44), as shown in Fig. 15. The best
AR model according to the PC shows the result in
Fig. 16 where there is no overfitting at the price of
larger training error. For n=44, 1000 data pairs were
extracted from =364 to 1363, of which the first 500
pairs were used to identify a; and the remaining 500
pairs were used for checking. The results obtained

400 500 600 700 800 900 1000 1100 1200 1300
time (sec)
(a) Desired {solid line) and predicted (dashed line) MG time series

400 500 600 700 800 900 1000 1100 1200 1300
time (sec)
(b} Prediction errors

Fig. 16. (a) Mackey-Glass time series from #=364 to 1363
and one-step ahead prediction by the best AR
model (n=44); (b) prediction errors.

Table 4. Generalization result comparisons for P=6

Training Error
Method Cases  Index (NDEI)

PENN 500 0.02
AR Model 500 0.32
ANFIS[10] 500 0.01
Cascde-Correlation NN' 500 0.06
Back-Prop NN' 500 0.02
6th-order Polynomial' 500 0.04
Linear Predictive Method' 2000 0.55

'These are taken from [4].
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through the standard least squares estimates are
RMSE,,=0.063 and RMSE ;,=0.075, which are much
worse than those of the PFNN.

Table 4 summarizes the generalization capabilities of
several other methods; each method is called upon to
predict 500 points immediately following the training
set. Here, the non-dimensional error index (NDEI)
is defined as the root mean squared error divided
by the standard deviation of the target series[4].

Table 5 lists the results of the more challenging
generalization tests when P=84 (the first seven rows)

Table 5. Generalization result comparisons for P=84 (the
first seven rows) and 85 (the last six rows).
Results for the seven methods are generated by
iterating the solution at P=6. Results for
localized receptive fields (LRF) and multi-
resolution hierarchies (MRH) are for networks
trained for P=85

Training Error
Method Cases  Index (NDEI)

PENN 500 0.06
AR Model 500 0.53
ANFIS[10] 500 0.04
Cascade-Correlation NN' 500 0.32
Back-Prop NN' 500 0.05
6th-order Polynomial' 500 0.84
Linear Predictive Method' 2000 0.60
LRF' 500 0.10~0.25
LRF' 10000 0.03~0.05
MRH' 500 0.05
MRH' 10000 0.02
Locally Tuned Network[18] 500 0.08
Fuzzy-neural approach[19] 500 0.21

'These are taken from[4].
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Fig. 17. Generalization test of PFNN for P=84.
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and P=85 (the last six rows). The results of the first
seven rows are obtained by iterating the prediction
of P=6 till P=84. The PFNN still shows good
performance. Fig. 17 illustrates the results for P=84,
where the first 500 points are the desired outputs of the
training set while the last 500 are the predicted outputs.

The PFNN method has been shown to accurately
predict the behavior of the Mackey-Glass equation.
We have obtained predictions that match the accuracy
of previous approaches as in Tables 4 and 5. If the
number of membership functions in the input variables
is increased, the accuracy can be improved further.

5. Conclusions

This paper introduces a new neuro-fuzzy system
based on the PFNN architecture. An effective
optimization method through a hybrid genetic
algorithm is introduced to optimize parameters. A new
performance criterion is defined to minimize the output
error while preventing overfitting of the empirical data
set. A novel coding scheme is presented to describe
fuzzy systems for a dynamic search range in the GA.
For a performance assessment of the PFNN inference
system, three well-known problems are used for
comparison with other methods. The results of these
comparisons show that the PFNN inference system
outperforms and is more robust than the other methods.
A PFNN modeling and hybrid genetic optimization
method can be employed to provide optimum set
points for low-level control activity.
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