In this paper we propose a Neuro-Fuzzy modeling method using mGA for complex nonlinear system. mGA has more effective and adaptive structure than sGA with respect to using the changeable-length string. This paper suggest a new coding method for applying the model's input and output data to the number of optimul rules of fuzzy models and the structure and parameter identifications of membership function simultaneously. The proposed method realize optimal fuzzy inference system using the learning ability of Neural network. For fine-tune of the identified parameter by mGA, back-propagation algorithm used for optimulize the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through compare with ANFIS.
Journal of Advanced Marine Engineering and Technology
/
제26권6호
/
pp.638-645
/
2002
This paper presents a scheme for integrating PID control, gain scheduling and emerging techniques in the field of artificial intelligence, such as fuzzy logic and genetic algorithms for the speed control of a marine diesel engine. At first, local PID controllers are designed based on a local model obtained at each speed mode, whose parameters are optimally tuned using a real-coded genetic algorithm. Then, fuzzy "if-then" rules combine the local controllers as a consequence part to implement fuzzy gain scheduling. To demonstrate the performance of the proposed fuzzy PID controller on overall operating conditions, a set of simulation works on B'||'&'||'W's 4L80MC diesel engine are carried out.t.
In this paper, we propose the neuro-fuzzy modeling method using VmGA (Virus messy Genetic Algorithm) for the complex nonlinear system. VmGA has more effective and adaptive structure than sGA. in this paper, we suggest a new coding method for applying the model's input and output data to the optimal number of rules in fuzzy models and the structure and parameter identification of membership functions simultaneously. The proposed method realizes the optimal fuzzy inference system using the learning ability of neural network. For fine-tune of parameters identified by VmGA, back- propagation algorithm is used for optimizing the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through comparing with ANFIS.
Journal of information and communication convergence engineering
/
제11권3호
/
pp.179-184
/
2013
Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.
Nowadays in offshore industry there are emerging hazards with vague property such as act of terrorism, act of war, unforeseen natural disasters such as tsunami, etc. Therefore industry professionals such as offshore energy insurers, safety engineers and risk managers in order to determine the failure rates and frequencies for the potential hazards where there is no data available, they need to use an appropriate method to overcome this difficulty. Furthermore in conventional risk based analysis models such as when using a fault tree analysis, hazards with vague properties are normally waived and ignored. In other word in previous situations only a traditional probability based fault tree analysis could be implemented. To overcome this shortcoming fuzzy set theory is applied to fault tree analysis to combine the known and unknown data in which the pre-combined result will be determined under a fuzzy environment. This has been fulfilled by integration of a generic bow-tie based risk analysis model into the risk assessment phase of the Risk Management (RM) cycles as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse one of the significant risk factors associated in offshore terminals. This process will eventually help the insurers and risk managers in marine and offshore industries to investigate the potential hazards more in detail if there is vagueness. For this purpose a case study of offshore terminal while coinciding with the nature of the Caspian Sea was decided to be examined.
The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.
In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.
Journal of the Korean Institute of Intelligent Systems
/
제7권4호
/
pp.82-92
/
1997
In this paper, a fuzzy measure and integral-based model fnr interactive systems is proposed. The
processes of model identification consists of the following three steps : (i) structure identification (ii)
parameter identification and (iii) selection of an optimal model. An algorithm for the model structure
identification using the well-known genetic algorithm ((;A) with a modified selection operator is proposed.
A method for the identification of par;imetcrs corresponding to fuzzy measures is presented. A
statistical model selection criterion is used for the selection of an optimal model among the candidates.
Finally, experimental results obtained hy applying the proposed model to the subjective evaluation data
set and the well-known time series data are presented to show the validity of the proposed model.
In this paper, we analyze the input-output characteristics of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods to identify the fuzzy model for nonlinear process. And fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters are used for identification of fuzzy model and membership function is used as a series of triangular membership function. In the consequence part of the rules fuzzy reasoning is conducted by two types of inferences. The identification of the consequence parameters, namely polynomial coefficients, of the rules are carried out by the standard least square method. And lastly, we use gas furnace process which is widely used in nonlinear process and we evaluate the performance for this nonlinear process.
Smartphones change the picture of data and information sharing and make it possible to share various real-time flooding data and information. The vulnerability indicators of farmland inundation is needed to calculate the risk of farmland flood based on changeable hydro-meteorological data over time with morphologic characteristics of flood-damaged areas. To find related variables show the vulnerability of farmland inundation using the binary-logit model and correlation analysis and to provide vulnerability indicators were estimated by fuzzy set method. The outputs of vulnerability indicators were compared with the results of Monte Carlo simulation (MCS) for verification. From the result vulnerability indicators are applicable to mobile_based information system of farmland inundation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.