• 제목/요약/키워드: fuzzy set model

검색결과 342건 처리시간 0.032초

Neuro-Fuzzy Modeling of Complex Nonlinear System Using a mGA (mGA를 사용한 복잡한 비선형 시스템의 뉴로-퍼지 모델링)

  • Choi, Jong-Il;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2305-2307
    • /
    • 2000
  • In this paper we propose a Neuro-Fuzzy modeling method using mGA for complex nonlinear system. mGA has more effective and adaptive structure than sGA with respect to using the changeable-length string. This paper suggest a new coding method for applying the model's input and output data to the number of optimul rules of fuzzy models and the structure and parameter identifications of membership function simultaneously. The proposed method realize optimal fuzzy inference system using the learning ability of Neural network. For fine-tune of the identified parameter by mGA, back-propagation algorithm used for optimulize the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through compare with ANFIS.

  • PDF

Speed Control of Marine Diesel Engines Using Fuzzy Gain Scheduling (퍼지 게인 스케줄링을 이용한 선박 디젤기관의 속도 제어)

  • 박승수;이현식;김도응;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.638-645
    • /
    • 2002
  • This paper presents a scheme for integrating PID control, gain scheduling and emerging techniques in the field of artificial intelligence, such as fuzzy logic and genetic algorithms for the speed control of a marine diesel engine. At first, local PID controllers are designed based on a local model obtained at each speed mode, whose parameters are optimally tuned using a real-coded genetic algorithm. Then, fuzzy "if-then" rules combine the local controllers as a consequence part to implement fuzzy gain scheduling. To demonstrate the performance of the proposed fuzzy PID controller on overall operating conditions, a set of simulation works on B'||'&'||'W's 4L80MC diesel engine are carried out.t.

Neuro-Fuzzy Modeling for Nonlinear System Using VmGA (VmGA를 이용한 비선형 시스템의 뉴로-퍼지 모델링)

  • Choi, Jong-Il;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1952-1954
    • /
    • 2001
  • In this paper, we propose the neuro-fuzzy modeling method using VmGA (Virus messy Genetic Algorithm) for the complex nonlinear system. VmGA has more effective and adaptive structure than sGA. in this paper, we suggest a new coding method for applying the model's input and output data to the optimal number of rules in fuzzy models and the structure and parameter identification of membership functions simultaneously. The proposed method realizes the optimal fuzzy inference system using the learning ability of neural network. For fine-tune of parameters identified by VmGA, back- propagation algorithm is used for optimizing the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through comparing with ANFIS.

  • PDF

Document Clustering Using Semantic Features and Fuzzy Relations

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • 제11권3호
    • /
    • pp.179-184
    • /
    • 2013
  • Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

Risk analysis of offshore terminals in the Caspian Sea

  • Mokhtari, Kambiz;Amanee, Jamshid
    • Ocean Systems Engineering
    • /
    • 제9권3호
    • /
    • pp.261-285
    • /
    • 2019
  • Nowadays in offshore industry there are emerging hazards with vague property such as act of terrorism, act of war, unforeseen natural disasters such as tsunami, etc. Therefore industry professionals such as offshore energy insurers, safety engineers and risk managers in order to determine the failure rates and frequencies for the potential hazards where there is no data available, they need to use an appropriate method to overcome this difficulty. Furthermore in conventional risk based analysis models such as when using a fault tree analysis, hazards with vague properties are normally waived and ignored. In other word in previous situations only a traditional probability based fault tree analysis could be implemented. To overcome this shortcoming fuzzy set theory is applied to fault tree analysis to combine the known and unknown data in which the pre-combined result will be determined under a fuzzy environment. This has been fulfilled by integration of a generic bow-tie based risk analysis model into the risk assessment phase of the Risk Management (RM) cycles as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse one of the significant risk factors associated in offshore terminals. This process will eventually help the insurers and risk managers in marine and offshore industries to investigate the potential hazards more in detail if there is vagueness. For this purpose a case study of offshore terminal while coinciding with the nature of the Caspian Sea was decided to be examined.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • 제32권6호
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Fuzzy Measure-based Subset Interactive Models for Interactive Systems. (퍼지 측도를 이용한 상호 작용 시스템의 모델)

  • 권순학;스게노미치오
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.82-92
    • /
    • 1997
  • In this paper, a fuzzy measure and integral-based model fnr interactive systems is proposed. The processes of model identification consists of the following three steps : (i) structure identification (ii) parameter identification and (iii) selection of an optimal model. An algorithm for the model structure identification using the well-known genetic algorithm ((;A) with a modified selection operator is proposed. A method for the identification of par;imetcrs corresponding to fuzzy measures is presented. A statistical model selection criterion is used for the selection of an optimal model among the candidates. Finally, experimental results obtained hy applying the proposed model to the subjective evaluation data set and the well-known time series data are presented to show the validity of the proposed model.

  • PDF

Characteristics of Fuzzy Inference Systems by Means of Partition of Input Spaces in Nonlinear Process (비선형 공정에서의 입력 공간 분할에 의한 퍼지 추론 시스템의 특성 분석)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • 제11권3호
    • /
    • pp.48-55
    • /
    • 2011
  • In this paper, we analyze the input-output characteristics of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods to identify the fuzzy model for nonlinear process. And fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters are used for identification of fuzzy model and membership function is used as a series of triangular membership function. In the consequence part of the rules fuzzy reasoning is conducted by two types of inferences. The identification of the consequence parameters, namely polynomial coefficients, of the rules are carried out by the standard least square method. And lastly, we use gas furnace process which is widely used in nonlinear process and we evaluate the performance for this nonlinear process.

Estimating Real-time Inundation Vulnerability Index at Point-unit Farmland Scale using Fuzzy set (Fuzzy set을 이용한 실시간 지점단위 농경지 침수위험 지수 산정)

  • Eun, Sangkyu;Kim, Taegon;Lee, Jimin;Jang, Min-Won;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2014
  • Smartphones change the picture of data and information sharing and make it possible to share various real-time flooding data and information. The vulnerability indicators of farmland inundation is needed to calculate the risk of farmland flood based on changeable hydro-meteorological data over time with morphologic characteristics of flood-damaged areas. To find related variables show the vulnerability of farmland inundation using the binary-logit model and correlation analysis and to provide vulnerability indicators were estimated by fuzzy set method. The outputs of vulnerability indicators were compared with the results of Monte Carlo simulation (MCS) for verification. From the result vulnerability indicators are applicable to mobile_based information system of farmland inundation.