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ABSTRACT

In this paper, a fuzzy measure and integral-based model for interactive systems is proposed. The

processes of model identification consists of the following three steps : (i) structure identification (ii)
parameter identification and (iii) selection of an optimal model. An algorithm for the model structure
identification using the well-known genetic algorithm (GA) with a modified selection operator is pro-
posed. A method for the identification of parameters corresponding to fuzzy measures is presented. A
statistical model selection criterion is used for the selection of an optimal model among the candidates.
Finally, experimental results obtained by applying the proposed model to the subjective evaluation data

set and the well-known time series data are presented to show the validity of the proposed model.

1. Introduction

In recent years, we frequently encounter the term
“system” not only in our daily life, but also in areas
of engineering, science, business, education, and etc.
One of many reasons for the wide use of the term
may be that there are in great demands today to a-
nalyze concepts of systems and apply them to vari-
ous situations. The word “system’ is not generally
used by itself, but is accompanied by an adjective or
other modifier (e.g., intelligent system, interactive
system, social system, etc.) which confines pro-
perties of the system to those of the adjective or

modifier. For an example, the interactive system
which is mainly concerned in this paper is a system
that all things involved or consisted in the system
act on one another.

For the analysis or prediction of characteristics of
the concerned system, it is necessary to model the
system on the basis of the physical law or the data
obtained from the system. In case of identification of
models using the given data, our attention will be
given almost exclusively to choose a suitably
parameterized model from the assumed class of
models. The methodology of system identification in-

volves the following three steps :
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(i) selection of a class of models from which a
model to represent the system is to be chosen

(i) parameter estimation of the chosen model on
the basis of the observed data

(iii) model variation based on adequate performance
indices to the problem

In this paper, we will also follow these three steps.

During the last several decades, for the analysis of
data with interaction, a number of linear or nonlinear
models have been devised and are going on [1~6,
19]. In these models, an adjective or other modifier
(e.g., linear regression model in regression analysis,
threshold model] in the analysis of time series data)
represents the structure of the model. In spite of
these research efforts, there remains the problem to
represent and analyze interactions among attributes.
For this reason, fuzzy measure-based models may
provide reasonable and effective alternatives to clas-
sical models. Fuzzy measures proposed by Sugeno|7]
are non-additive measures that provide attractive
means to represent interactions among attributes. Be-
cause of their characteristics, fuzzy measures have
been applied to modeling of a variety of systems
[4~6].

GA's developed by Holland[8] are general purpose
search procedures based on models of evolutionary
processes in nature. They use operations such as
selection, recombination and mutation to guide itself
through the paths in the search space. Because of
their robustness and the ease with which they can
handle arbitrary kinds of constraints and objectives,
GA's have been successfully applied to various op-
timization problems suych as control problems,
scheduling and learning systems[9].

In this paper, we propose a subset interactive
model using non-monotonic fuzzy measures and the
Choquet integral. GA’s are used for searching a par-
simonious model from a large number of possible alt-
ernative models. Two set of experimental data, one
of which is the data set for nonlinear regression and
the other is the well-known time series data (i.e., the
Canadian lynx data), are examined to check the ef-
fectiveness of the proposed model. Experimental
results show that the proposed models have superior
performances compared to those using linear models
and some nonlinear models.
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2. Fuzzy Measures and the Choquet
Integral

Fuzzy measures, including non-monotonic fuzzy
measures[10}, are non-additive measures and more
general than the conventional Lebesgue measures as-
suming additivity. Hence, fuzzy measures may be ap-
propriate for approximating processes with in-
teractions among their inputs. We start with the de-
finition of a fuzzy measure, which is a monotone set
function. Let X be a non-empty set and let F be a o-
algebra defined on X.

Definition 1. A fuzzy measure on a measurable
space (X, F) is a real-valued set function A : X—R"
with the following two properties [7] :

(a) A(9) =0,

(b) A, BEF and AC B— AA) < AMB),
where R"=[0, oo] is the set of nonnegative real
numbers.

The triplet (X, F, A) is called a fuzzy measure
space and A defined on F is called a fuzzy measure
on a measurable space (X, F). The fuzzy measure
can be considered as an extension of the classical pro-
bability measure (i.e., the additivity of the classical
measure is replaced by the weaker condition of mono-
tonicity). In this monotonic fuzzy measure, the fuzzy
measure A(A) of a subset A of the universe of
discourse X expresses the degree of belief/likelihood/
confidence of 'x, & A', where x, is an unknown ele-
ment of X.

However, in the real world, there exist some cases
where the monotonicity is inessential. We consider
some measures [ which represent degrees of in-
teraction among subsets. Suppose A and B are dis-
joint subsets. If the interaction between A and B is
cooperative, then p(A) < n(A U B) and/or p(B)< p
(AU B) will be satisfied. But if the interaction
between A and B is countervailing, then p(A) > u(A
U B) and/or p(B)= n(A U B) may be satisfied,
which violate the monotonicity condition of the fuzzy
measure. Thus, it is natural that we consider a non-
monotonic fuzzy measure[10].

Definition 2. A non-monotonic fuzzy measure [
on a measurable space (X, F) is a real-valued set
function p : X - R satisfying u(¢) = 0.

Throughout this paper, we use the interpretation



LH R A 2|5 A AEEF3] =F3] 1997 Vol. 7, No. 4.

that the
expresses the interaction among subsets. We can de-

non-additivity of the fuzzy measure
fine the Choquet integral with respect to non-mono-
tonic fuzzy measures[10], which is very reasonable
as an integration with respect to fuzzy measures.
Definition 3. The Choquet integral, denoted by the

symbol, (c)J, of a measurable function f: X-—R with

respect to a non-monotonic fuzzy measure [ over a
set A< F is defined by

() ] fdu= I:u({x |f(x>2r} nA)dr

+ JL[u({x|f<x)2r}mA>-u(A>1dr (1)

where the integral in the right side is an ordinary Le-
besgue integral. A measurable function f is said to be
integrable iff the Choquet integral of f over X is finite.
For the special case of i being additive, the definition
above coincides with the Lebesgue integral. The fol-
lowing are basic properties of the Choquet integral
with respect to a non-monotonic fuzzy measure |.

()1, du=p(a)
1xeA,

0 otherwise

@

where, 1= {

©[(af+b)du=a - (c)[fdu+b pX)VabeR .(3)

3. Subset Interactive Models

As pointed out in section 2, the non-monotonic fuz-
zy measure is appropriate for modeling a process
with interactions which are cooperative and/or coun-
tervailing. In this section, we propose a new ap-
proach to modeling of interactive systems using non-
monotonic fuzzy measures and the Choquet integral,
and present a subset interactive model which may be
a generalized model of the classical linear regression
or time series models.

If we write down a general nonlinear subset in-
teractive model of order n, it takes the following form :

y = h (X, X5, ..., Xo) + €,

@

where y is an output, h is a nonlinear function of in-

put variables (i.e., values of attributes x;, x», . . ., X,),
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and e is the white noise series (i.., a sequence of in-

dependent zero mean and finite variance random vari-

ables). If we assume that the structure of regression

model can be described by a linear form, the model

(4) will be a linear regression model written as
n

y :Zaix, +e, (5)

i=1

and if we assume that the structure of the time series

can be described by a linear form, the model (4) will

be a linear AR(Auto-Regressive) model written as

©)

n
Xt =Za,-x,_, +e .
i=1

However, the assumption of linearity in this model
is a very strict one. As Tong [3] pointed out, a linear
model is totally inadequate as a tool to analyze more
intricate phenomena which are apparent in subjective
evaluation data or in time series data. Therefore, it is
very natural to remove the assumption that inputs are
independent of each other, and then apply fuzzy
measures to express the interaction among inputs. In
this case, it is necessary to devise methods which ov-
ercome difficulties caused by high dimensionality (i.
e., the curse of dimensionality that the data points are
sparse in the high dimensional sample space and the
difficulty of interpretation). In another respect, subset
models are often desirable, especially when the data
exhibits some form of periodic behavior. In such
cases, fitting full order models often results in the fitt-
ed coefficients of some lags being close to zero.

With this background, we will propose a subset in-
teractive model which is a natural extension of linear
regression models or linear AR time series models.
To give a more precise definition of the model, let X

= {Xi, ..., X} be a set of explanatory variables, let f
be a real-valued function of X, and let x, be a
response variable. The interactions among ex-

planatory variables can not always be described by
additive or monotonic functions. In such cases, the fit-
ting ability of a model using additive or monotonic
functions will be degraded. With this background and
notation, we will propose a new model for the in-
teractive system as follows:

y=3(c) [ fdpre. )
i=1
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where (i) Ci is an element of a class C = {C,,..., G}

such that , C;C S, C;#+ ¢ and 'kl’)l =C=Sfori=1,..
iz

, p and SC X, C= ¢, (ii) m is a non-monotonic fuz-

zy measure, (iii) f is a measurable function f: X—R,

and (iv) errors e are assumed to be independent and

normal, with mean zero and variance o

The cognitive interpretation of this model is that
the classification of explanatory variables X can be
accomplished with the strategy that the explanatory
variables included in the same class have strong in-
teractions, but the relationships among classes may
be characterized by weak interactions. Fig. 1 shows a
structure of the proposed model.

The proposed model coincides with the linear re-
gression or AR model if the non-monotonic fuzzy meas-
ures are additive, and it becomes a subset AR model
when the non-monotonic fuzzy measures are additive
and the subset S is not equal to X. Thus, to identify the
subset interactive model (7) from the given data, we
have to estimate non-monotonic fuzzy measures m and a
covering C (i.e., a structure of the model).

We will consider how to identify non-monotonic
fuzzy measures for the developed model. In this pap-
er, the parameters (i.e., non-monotonic fuzzy meas-
ures |1} are identified by using the maximum-likel-
ihood method which yields the estimate p that max-
imizes the log-likelihood function L(u,c7) given by

L (u.&):-%log(zml)

2

1 N P
Y\|z-Y () | fap

5
20" 5 i=

®)

X ©f o
X2 :
(c)| fdp
I-’ ©
- (©) L fdp

Fig. 1. A structure of the proposed model.
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where N is the number of data. Thus maximum-likel-
ihood estimates |1 will be obtained by minimizing a
variance (9), which can be solved by use of the least
squares method.

I 02 —..2{ noa ___l_
(ﬂ’ ) 210g(2 ) 2 £
2

R 1 N P
==z~ (c) | fdu ©)
=1 j=1

4. Subset Selection using Genetic
Algorithms

The structure identification of (7) can be con-
sidered a combinatorial optimization problem (i.e., to
search a covering C of X). In order to obtain good
(sub optimal) solutions for such combinatorial prob-
lems at a low computational cost, many algorithms
have been devised and used [1]. One of the most
comprehensive, but cumbersome ways to solve it is
to examine all possible combinations of subsets of X
(i.e., exhaustive examination). However, the straight-
forward search for structure and non-monotonic fuz-
zy measures optimizing a cost function over all pos-
sible coverings may be a computationally hard prob-
lem when the number of inputs increases.

Genetic algorithms which evolve according to rules
of
searches by maintaining a population of potential

evolving operators perform multi-directional
solutions. They are fundamentally different from con-
ventional search methods in facts that they perform
stochastic, multi-directional, and parallel search in the
search space. They use operations such as selection,
recombination and mutation to guide itself through
the paths in the search space.

The simple GA (SGA) [9] has a serious problem
called premature convergence, where a single po-
pulation element dominates the population and the ca-
pability of the system to explore the search space is
impaired. In the following, we will briefly explain
each of the GA components and present some stra-
tegies which allow the use of a relatively small po-
pulation size and prevent premature convergence.

Potential solutions (i.e., coverings of X) are en-
coded into binary based-strings of which j-th bit (i.e.,
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gene) represents whether the j-th subset of X is in-
cluded in the covering or not. The j is obtained by

(10)

For example, the string representing a covering C =
{{x1, x2}, {x1, x5} of X = {xy, Xz, X3} is as follows :
subsets {x:} {x:} {xi.x:} {x3} {xi.%:} {x%:} {xi %23}
string ( 1 1 1 1 1 0 0).
For convenience, we denote the string of a cov-
ering C as bit (C). For example, bit (C, = {{x;}})
represents the string (1 0 0 0 0 0 0) , and bir (C,
{X}) represents the string (1 1 1 1 1 1 1). In this n
bit string representation, there are 2" possible com-

binations. However, some of these are infeasible (e.g.,
B=(1010000)). Thus, it is necessary to map
these infeasible strings into other feasible strings by
using lower and upper approximation as the mapping.
The lower approximation of a string B. is a string
which represents a maximal irreducible covering that
belongs to B. The upper approximation of a string B*
is a string which represents a minimal irreducible cov-
ering that overlaps with B. For example, we consider
the above bit string B=(1 0 1 0 0 0 0). Then, the
lower approximation of B is B.=(1 0 0 0 0 0 0),
and the upper approximation of Bis B.=(111000
0). These lower and upper approximations of a string
make all possible strings be feasible, though these
may lead to probabilistic selection bias. The pro-
babilistic selection bias problem can be overcome by
a selection strategy to be discussed below.

The fitness function plays the role of the en-
vironment, rating potential solutions in terms of their
fitness. Based on the characteristics of the problem to
be solved, we use Bayesian Information Criterion
(BIC) [11] given by

BIC = Nlog ¢° + m log N, (11)

where N is the number of data, m is the number of
independent parameters and log denotes natural log-
arithm. It is well known fact that BIC provides a con-
sistent model selection. Thus, the use of BIC as a
model selection criterion prevents over-paramet-
erization that may be occurred in the use of in-
consistent model selection criteria.

The primary work of the genetic algorithm is per-
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formed by three operators, select, crossover, and mu-
tation. Such genetic operators, which are applied to
partial or entire populations at each generation, are
designed to be types of problem specific operators.
Any genetic operator should pass some chromosome
structures from parent to offspring and preserve po-
pulation diversity.

For the simple GA, the competition is not between
parents and their offspring but only between the en-
tire set of offspring. And the probability-based selec-
tion of the SGA has a possibility that the chro-
mosome with the highest fitness does not survive to
the next generation. These may lead to the loss of po-
pulation diversity, so that the solution falls into a lo-
cal optimum. To combat this phenomenon, we devise
a selection scheme which is capable of forming and
maintaining stable subpopulations, or niches as fol-
lows. As the topology of the selection scheme, we a-
dopt a ring structure shown in Fig. 2.

In Fig. 2, p(t) (i=1, 2, ... , n) represent chro-
PO = {p®. p:t). -, pa®}

represents a population at time t, and each niche has

mosomes at time f,

only one chromosome. Thus, if the size of the initial
population is n, the number of niches becomes n.
The selection operator for mating performs simple de-
terministic selection without replacement from the po-
pulation pi(t) (i.c., if a single individual pi(t) selected,
then the other individual selected is pi,i(t) (also, the
neighbor of p.(t) is pi(t)). This selection method has a
capability that makes probabilistic selection bias negli-
gible due to the representation scheme mentioned a-
bove. If p(t) and p..(t) are selected as parents, then
the best among offspring (i.e., c{t)*, ci(t)*, ¢ii(D)* and

o)

Fig. 2. Ring topology for niching mechanism.
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cin()*) and p(t) replaces the pi(t) in the next gen-
eration. That is, the best solution is copied into the
next generation, called elitist selection.

The multiple points crossover operation is per-
formed in the following way. First, chromosomes in
the pool are mated according to some rules, then
each pair of mated chromosomes crosses over genetic
information from one chromosome to another. The
crossover probability of 0.6 is fixed for all trials.

Mutation arbitrarily alters one or more genes of a
selected chromosome by a random change with a pro-
bability equal to the mutation probability, which in-
troduce some innovations into the population. The
swap type mutation scheme is used with a mutation
probability of 0.1, fixed for all trials.

5. Applications

To examine the adequacy of the subset in-
teractive model using non-monotonic fuzzy meas-
ures and the Choquet integral, we apply it to
some real data (i.e., subjective evaluation data:
sensory evaluation data of rice taste and the well-
known time series data: the Canadian lynx data)
and show experimental results obtained from
these data. Simultaneously, we apply traditional
models to these data set, and compare fitting and

forecasting performances of these models.

5.1. Subjective evaluation data

The design strategy of designers or experts faced
with developments of new products depends greatly
on not only its physical properties but also con-
sumer preference. We may find typical examples
such as rice, blended coffee, cars, cosmetics and etc.
around our daily life. As consumer preference is
based on the subjective evaluations on something,
it is important to investigate how the subjective
evaluation is done. As the first application of our
model, we consider the sensory evaluation of rice
taste to which people for whom rice is a staple are
very sensitive.

Let (X,Y) be a pair of given data such that X = {x,,

., X4y is a set of attributes to be considered, and
the overall evaluation Y is real-valued. To show
characteristics of the proposed model more quan-
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titively, we compare it with a linear regression model

given by
y=Y ()] fdu+e (12)
i=1 ‘
where Ci={xi}, C;={x3}, . . ., C,={X.} and a
parametric non-structurized subjective evaluation

model, in short PSE-model, using non-monotonic fuz-
zy measures and the Choquet integral given by

y=()] fdu+e (13)

where the covering C; = {x;,  ,n}.

In this application, we used 104 data points given
by sensory evaluaton of 24 panelists with excellent
evaluation ability. The data consists of an overall
evaluation (Y), and 5 additional partial evaluations
which are believed to be related to the taste of rice,
that is, x, : flavor, x; : appearance, x; : taste, x4 : stick-
iness and x5 :toughness. Sensory evaluation was
done with 11 step scales for flavor, appearance, taste
and overall evaluation. On the other hands, 7 step
scales are adopted for stickiness and toughness. All
data were preprocessed to make all variables have
values within the range of 0.0 to 1.0 and have 0.5 as
the average of each variable. The data set was di-
vided into two halves, called odd-half and even-half.
The odd-half was used as the training data for iden-
tification of the model, and the even-half was used as
checking data.

A subset interactive model shown in (14) was iden-
tified using the GA-based method with BIC as a per-
formance index.

Fig. 3. A schematic diagram of the identified model.
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Table 1. Identified non-monotonic fuzzy measures

subset A fuzzy measures p(A)
o 0.0000
{x} 0.0552
{x;} 0.5164
{x} 0.2577
{x, x4} 0.5132

Table 2. Performance table

number of J

models o, BIC O
parameters
linear 0.00078 6 -348.38 0.00174
PSE 0.00028 32 -299.93 0.00720
subset interactive 0.00056 ) -369.21 0.00154

y= ()] fdu+e (14)

i=1

where C1 = {x3}, C2={x1, x4}. Fig. 3 shows a
schematic diagram of the identified model. Table 1
shows identified non-monotonic fuzzy measures.
From the model (14), we can see that the overall
evaluation Y may be influenced by three attributes
among five attributes, that is, x,:flavor, x;: taste,
Table 2
results obtained by applying the training data to a

and x,: stickiness. shows experimental
linear model, a PSE-model and a subset interactive
model, respectively. The second and third columns in
table 2 give mean sums of squared errors obtained
from the training data and the number of parameters
for each model. In column four, values of BIC are
listed. The last column shows values of mean sums
of squared errors obtained by applying identified
models to the checking data.

From table 2, we can see that the proposed subset
the best
between the goodness of fit and the complexity of

interactive model provides compromise
the model. Fig. 4 shows the relationship between the
estimated and the observed overall evaluations ob-
tained from the training data (a), and the checking

data (b).

5.2. Time series data

As the second application, we consider the Cana-
dian lynx data set. This data set, which consists of
114 observations, shows the annual record of the
number of Canadian lynx trapped in the Mackenzie
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Fig. 4. Relationship between the observed versus the es-
timated overall evaluations
(a) the training data (b) the checking data

river district of Canada for the years 1821-1934. It
has been analyzed by many time series analysts to
validate their time series models since Moran [12],
who initially applied a logarithmic transformation (i.e.,
logl0) in order to reduce the asymmetrical ap-
pearance of the original data. For example, Campbell
and Walker [13], Tong [14], Tong and Lim [15],
Gabr and Subba Rao [16], Haggan [17] are the
representational works, of which models have been
shown to has the advantage of accounting for many
nonlinear features, and to provide good fits and fore-
casting to this data.
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To compare fitting and forecasting performances
obtained from several models with the subset in-
the logarithmically
transformed data into a data set with the first 100 ob-

teractive model, we partition
servations (observations over the period 1821-1920)
for fitting and the other data set with the last 14 ob-
servations (observations over the period 1821-1934)
for prediction. We will compare the relative fit of
linear and nonlinear models using performance in-
dices such as the mean sum of squares of residuals
and the normalized AIC [18] values given by

NAIC =logd + 27”’ (15)
where N is the number of data, m is the number of
independent parameters and log denotes natural log-
arithm. It is well-known fact that AIC is a criterion
to measure the quality of a model by its goodness of
fit for given data and by its complexity. That is, a
model selected by minimizing the value of AIC has
the best compromise between goodness of fit for
given data and model complexity.

Since the best AR model is found to be AR(12),
the maximum lag is chosen to be 12 (the first 12 ob-
servations are omitted). The fitted full AR model, the
best subset AR model, the best subset bilinear model,
the threshold subset interactive model and the subset
interactive model are as follows:

1) Full AR model [16]

The fitted model
servations is

to the mean corrected ob-

2064 + 1.4246X,, - 1.0795X,,- 0.0907X, .+,

x|

0

The one-step-ahead predictors of this model are
given in their paper. The mean sum of squares of resi-
duals is 0.0415 and the AIC value is -262.7 (the nor-
malized AIC for SETAR (2:6:3) is -2.985).

5) Subset interactive autoregressive model

For reducing the computational cost, we choose 9
variables (i.e., X = {X.1, Xc2 Xex, Xeas Xes, Xeo, Xews Xoo
11, Xp12}) among the given 12 variables (i.e., {X.1, X2,
X12}). The bit string length of 511 is det-
ermined by the number of subsets of X. The po-
500

X3y s

pulation size is and the number of sub-

0.8023 + 1.0676X,, -0.2069X,, + 0.1712X,., - 0.4528X, , + 0.2237X,, - 0.331X,, + ¢,
2.

89

X - 1.0541x,.+ 0.4539x,,- 0.32597x,3+ 0.37912x,4
- 0.23452x%,5 + 0.17570%,., - 0.09598%,.;
+ 0.128437x.5 - 0.27435%.9 - 0.11427x 10

+ 0.18534x.;+ 0.17128x.1> = e, (16)

The mean sum of squares of residuals is 0.0358
and the AIC value is -266.9 (the normalized AIC is -
3.033).

2) Best subset AR model [16]

The fitted best subset AR model to the mean cor-
rected observations is

% - 1.01705x,,+ 0.39997x,, - 0.25851x,5
+ 0.22037x,4 - 0.21099xt-9+ 0.25343x%,12 = e.(17)

The mean sum of squares of residuals is 0.0378
and the AIC value is -274.2 (the normalized AIC for
subset AR model is -3.116).

3) Best subset bilinear model [16]

The fitted best subset bilinear model is

X, - 0.77227X 0+ 0.091572X,., - 0.083073x,4
+ 0.261493x,4 - 0.225585X,4 + 0.245841x,,»
- 1.486292 = - 0.7893X,; .o+ 0.4798Xt-9¢.
+ 0.3902X 4800 + 0.1326X, e, + 0.07944Xze7
- 0.3212X 600 + 8. (18)

The mean sum of squares of residuals is 0.0223
and the AIC value is -308.7 (the normalized AIC for
bilinear model is -3.508).

4) The threshold autoregressive model [15]

The sclf-exciting threshold autoregressive model
SETAR (2:6;3) fitted by Tong and Lim is

if 0<X,,< 3.50,
if 3.05<X,<10
otherwise (19)

’populations is 500. The crossover probability is 0.6

and the mutation probability is 0.1. The fitted subset

interactive autoregressive model to the mean cor-

rected observations is
3 -

v :‘\;]((- )j(. fdu+e (20)
where the identified covering C is {C, = {x..1}, C
= {X.2, Xewh Ci={%, Xowh Co={x.2}}, and
the identified non-monotonic fuzzy measures m
are exhibited in Table 3. As we can sce in Table 3,
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Table 3. Identified non-monotonic fuzzy measures

Table 4. One-step-ahead predictions of the Canadian

subset A fuzzy measures pH(A) t X(t) Full AR Subset AR SBL SI AR

0 0.0000 1921 2360  2.389 2.362 2410 2211

{x.1} 0.8961 1922 2601 2812 2.792 2.745 2731

{x.2} -0.4333 1923  3.054  2.788 2.863 2911 2910

{xpa} 0.1713 1924 338  3.197 3.206 3211 3.195

{Xe10} 0.0491 1925 3553 3.354 3.338 3341 3366

{X2: Xuio} 0.0843 1926 3468  3.431 3.303 3438 3.488

{Xeas Xuao} -0.2596 1927 3.187  2.860 2.946 3152 2937

{Xe12} -0.2747 1928 2723 2.624 2.636 2569  2.448

1929 2686  2.485 2.435 2.796  2.358

1930 2.821 2853 2.832 2825 2183

. . 1931 3.000 2.973 2.978 3.056  3.040

the number of mdepfendent parameters is 8. And 1932 3021 %255 3262 3175 3473
the suboptimal subset is S = {X(_l, X2 Xias Xi10s X(_lz}. 1933 3.424 3.397 3.425 3.291 3.392
The mean sum of squares of residuals is 0.0333 and 1934 3531  3.563 3.562 3444 3524

the AIC value is -283.281 (the normalized AIC for this
subset interactive autoregressive model is -3.219).

The comparison graph of observations and simu-
lated data is plotted in Fig. 5.

The performance of time serics models may be judg-
ed on the basis of their forecasting performances. In
order to compare the forecasting performance of the fitt-
ed models, we obtained the one-step-ahead predictions
for the period up to 1955 given in Table 4.

The mean sum of squares of one-step-ahead pred-
iction errors for the full AR model is 0.025488, for
the best subset AR model is 0.022328, for the best
subset bilinear model is 0.013306, and for the subset
interactive autoregressive model is 0.02721. From

this results, we can see that the subset interactive au-
toregressive model does not have good performance
of prediction in comparison with other models. For
this reason, we note that the model selection criterion
used in this paper (i.e., BIC) may not be adequate for
this purpose, so that the fitted subset interactive au-
toregressive model is not the best but sub optimal
model.

6. Conclusions

In this paper, we proposed a subset interactive
model using non-monotonic fuzzy measures and the

40

35

30

25

Number of the Canadian lynx

20

Observations * Simulated data

15
1830 1840 1850 1860 1870

1880 1890 1900 1810 1920

Years (1833-1920)

Fig. 5. Comparison of observations and simulated data.
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Choquet integral. We discussed the

between the proposed model and traditional models

relationship

such as regression models and time series models.
Furthermore, we have presented a subset selection
method that uses genetic algorithms. The devised sub-
set selection algorithm has a niching mechanism for
preserving the population diversity and then preventing
the solution from falling into a local optimum. Finally,
we have shown that the suggested model performed
well in comparison with some other models (e.g.,
linear regression model, the full AR model).
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