DOI QR코드

DOI QR Code

Characteristics of Fuzzy Inference Systems by Means of Partition of Input Spaces in Nonlinear Process

비선형 공정에서의 입력 공간 분할에 의한 퍼지 추론 시스템의 특성 분석

  • Received : 2010.11.16
  • Accepted : 2011.01.13
  • Published : 2011.03.28

Abstract

In this paper, we analyze the input-output characteristics of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods to identify the fuzzy model for nonlinear process. And fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters are used for identification of fuzzy model and membership function is used as a series of triangular membership function. In the consequence part of the rules fuzzy reasoning is conducted by two types of inferences. The identification of the consequence parameters, namely polynomial coefficients, of the rules are carried out by the standard least square method. And lastly, we use gas furnace process which is widely used in nonlinear process and we evaluate the performance for this nonlinear process.

본 논문은 비선형 공정의 퍼지 모델을 동정하기 위해 전체 입력의 공간 분할 및 퍼지 추론 방법에 따른 퍼지 추론 시스템의 입출력 특성을 분석하며, 퍼지 모델의 입력 변수와 퍼지 입력 공간 분할 및 후반부 다항식 함수에 의한 구조 동정과 파라미터 동정을 통해 비선형 공정을 표현한다. 퍼지 규칙에서 전반부 파라미터의 동정에는 입출력 데이터의 최소 값과 최대 값을 이용하는 최소-최대 방법 및 입출력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘을 사용하여 입력 공간을 분할한다. 또한 전반부 멤버쉽 함수는 삼각형 멤버쉽 함수를 사용하여 입력 공간을 형성한다. 후반부 동정에서 퍼지 추론 방법은 간략 추론 및 선형 추론에 의해 시스템을 표현한다. 또한, 각 규칙의 후반부 파라미터들, 즉 후반부 다항식의 계수를 동정하기 위해 표준 최소자승법을 사용한다. 마지막으로, 비선형 공정으로는 널리 이용되는 가스로 데이터를 사용하며 이 공정에 대해 성능을 평가한다.

Keywords

References

  1. R. M. Tong, "Synthesis of fuzzy models for industrial processes," Int. J. Gen. Syst., Vol.4, pp.143-162, 1978. https://doi.org/10.1080/03081077808960680
  2. W. Pedrycz, "An identification algorithm in fuzzy relational system," Fuzzy Sets Syst., Vol.13, pp.153-167, 1984. https://doi.org/10.1016/0165-0114(84)90015-0
  3. W. Pedrycz, "Numerical and application aspects of fuzzy relational equations," Fuzzy Sets Syst., Vol.11, pp.1-18, 1983. https://doi.org/10.1016/S0165-0114(83)80066-9
  4. E. Czogola and W. Pedrycz, "On identification in fuzzy systems and its applications in control problems," Fuzzy Sets Syst., Vol.6, pp.73-83, 1981. https://doi.org/10.1016/0165-0114(81)90081-6
  5. C. W. Xu, "Fuzzy system identification," IEEE Proceeding Vol.126, No.4, pp.146-150, 1989.
  6. R. M. Tong, "The evaluation of fuzzy models derived from experimental data," Fuzzy Sets Syst., Vol.13, pp.1-12, 1980.
  7. C. W. Xu and Y. Zailu, "Fuzzy model identification self-learning for dynamic system," IEEE Trans. on Syst. Man, Cybern., Vol.SMC-17, No.4, pp.683-689, 1987. https://doi.org/10.1109/TSMC.1987.289361
  8. Box and Jenkins, "Time Series Analysis, Forcasting and Control," Holden Day, SanFrancisco, CA.
  9. T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst. Cybern., Vol.SMC-15, No.1, pp.116-132, 1985. https://doi.org/10.1109/TSMC.1985.6313399
  10. M. A. Ismail, "Soft Clustering Algorithm and Validity of Solutions," Fuzzy Computing Theory, Hardware and Applications, edited by M.M. Gupta, North Holland, pp.445-471, 1988.
  11. P. R. Krishnaiah and L. N. Kanal, editors. Classification, pattern recognition, and reduction of dimensionality, volume 2 of Handbook of Statistics. North-Holland, Amsterdam, 1982.

Cited by

  1. Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space vol.12, pp.11, 2011, https://doi.org/10.5762/KAIS.2011.12.11.5164
  2. Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function vol.12, pp.4, 2014, https://doi.org/10.14400/JDC.2014.12.4.277