• Title/Summary/Keyword: fuzzy predictive control

Search Result 59, Processing Time 0.026 seconds

A Study on the Fuzzy Demand Control Technique (퍼지 디맨드 예측제어기법 연구)

  • Seong, Ki-Chul;Yoon, Sang-Hyun;Kang, Min-Kyu;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.169-171
    • /
    • 1999
  • This paper presents a new demand control technique using fuzzy logic. Generally, predictive demand control method often brings about a large number of control actions and undesirable alarm during the beginning stage of the demand period. To solve this problem, a fuzzy predictive algorithm is proposed. The main idea of the method is the determination of sensitivity factor by using fuzzy logic. The performance of the proposed algorithm is tested through a case study.

  • PDF

Optimal design of the PID Controller using a predictive control method

  • Kim, Sang-Joo;Lee, Jang-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.69-75
    • /
    • 2005
  • This paper is concerned with the design of a predictive PID controller, which has similar features to the model-based predictive controller. A PID type control structure is defined which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are pre-calculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with generalized predictive controller and the results are compared with generalized predictive control solutions.

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

Unit Response Optimizer mode Design of Ultra Super Critical Coal-Fired Power Plant based on Fuzzy logic & Model Predictive Controller (퍼지 로직 및 모델 예측 제어기 적용을 통한 초초임계압 화력발전소 부하 응답 최적화 운전 방법 설계)

  • Oh, Ki-Yong;Kim, Ho-Yol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2285-2290
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant component. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control process of power plant in ultra super critical point because that point has highly nonlinear characteristics. In this paper, new control logic, Unit Response Optimizer Controller(URO Controller) which is based on Fuzzy logic and Model Predictive Controller, is introduced for better performance. Then its performance is tested and analyzed with design guideline.

Design of Neuro-Fuzzy-based Predictive Controller for Nonlinear Systems with Time Delay (지연시간을 갖는 비선형 시스템을 위한 퍼지-신경망 기반 예측제어기 설계)

  • Kim, Sung-Ho;Kim, Joo-Whan;Lee, Young-Sam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.144-150
    • /
    • 2002
  • In this paper a design of neuro-fuzzy-based predictive controller for nonlinear systems with time-delay is proposed. The proposed control system contains two neuro-fuzzy systems called ANFIS(Adaptive Neuro-Fuzzy Inference System). One is run as a series-parallel mode and the other is run as a parallel mode. An ANFIS running in series-parallel mode emulates the response of the nonlinear system with time-delay. Another ANFIS running in parallel mode generates the predicted output of the nonlinear system to compensate for the time-delays. Therefore, the proposed control system can be thought of as an extension of Smith-predictor scheme to the nonlinear systems with time-delay. A detailed design Procedure is presented and finally computer simulations are executed for the effectiveness of the proposed control scheme.

Robust fuzzy self-organizing control system of temperature environmental test equipment (온도환경 시험장비의 강인한 퍼지 자기조성 제어 시스템)

  • 김인식;윤일선;남세규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1086-1088
    • /
    • 1993
  • A robust fuzzy self-organizing controller(SOC) is proposed for an environmental temperature chamber. Although fuzzy SOC can improve the performance of nonlinear system, the controller is ineffective to solve the performance degradation owing to the time varying factors. In this paper, we construct the fuzzy SOC with a predictive scheme based on the 386PC. The usefulness of the proposed scheme is shown through the comparison of the PI controller and the fuzzy controller.

  • PDF

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.

A Study on Realization of Function Code for Fuzzy Control in the Continuous Casting Process of the Iron & Steel Works (제철소 연속주조 공정에서의 퍼지제어를 위한 기능코드의 구현 연구)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1545-1551
    • /
    • 1995
  • As the modern industrial processes become more complex, it is getting more difficult to model and control the processes. Naturally, an advanced type of DCS(Distributed Control System) with higher level functions is being sought. Advanced DCS is a DCS with advanced functions such as fault diagnosis, GPC(Generalized Predictive Control), NN(Neural Network), and Fuzzy Control. In this thesis, we have studied a fuzzy control algorithm for realizing an advanced DCS. Its algorithm is implemented in a form of function code which is a process control language, being used by the industrial engineers. To verify the realized function code of the fuzzy control, the function code is applied to a continuous casting process of the Pohang Iron & Steel Works in Kwangyang. The rules of the fuzzy control were collected via interviews of the field operators and their operation documents. Finally under a real-time operating system environment, usability of the function code of the fuzzy control is shown via simulation for the continuous casting process.

  • PDF

A Study on Realization method of Fuzzy Control Algorithm for DCS (DCS에 퍼지제어 알고리즘 구현방법에 관한 연구)

  • Hur, Yone-Gi;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.995-998
    • /
    • 1995
  • As the modern industrial processes become more complex, it is getting more difficult to model and control the processes. Naturally, an advanced type of DCS(Distributed Control System) with higher level functions is being sought Advanced DCS is a DCS with advanced functions such as fault diagnosis, GPC(Generalized Predictive Control), NN(Neural Network), and Fuzzy Control. In this thesis, we have studied a fuzzy control algorithm for realizing an advanced DCS. Its algorithm is implemented in a form of function code which is a process control language, being used by the industrial engineers. To verify the realized function code of the fuzzy control, the function code is applied to a continuous casting process of the Pohang Iron & Steel Works in Kwangyang. The rules of the fuzzy control were collected via interviews of the field operators and their operation documents. Finally, usability of the function code of the fuzzy control is shown via simulation for the continuous casting process model.

  • PDF

The PID Controller for Predictive control Algorithm (예측제어기법을 이용한 PID 제어기 설계)

  • Kim Yang-Hwan;Lee Jung-Jae;Lee Jung-Yong;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2005
  • This paper is concerned with the design of a predictive PID controller which has similar features to the model-based predictive controller. A PID type control structure is defined, which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are precalculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with the conventional PID and fuzzy control algorithms.