• Title/Summary/Keyword: fuzzy normal subgroup

Search Result 20, Processing Time 0.024 seconds

Interval-Valued Fuzzy Cosets

  • Lee, Keon-Chang;Hur, Kul;Lim, Pyung-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.646-655
    • /
    • 2012
  • First, we prove a number of results about interval-valued fuzzy groups involving the notions of interval-valued fuzzy cosets and interval-valued fuzzy normal subgroups which are analogs of important results from group theory. Also, we introduce analogs of some group-theoretic concepts such as characteristic subgroup, normalizer and abelian groups. Secondly, we prove that if A is an interval-valued fuzzy subgroup of a group G such that the index of A is the smallest prime dividing the order of G, then A is an interval-valued fuzzy normal subgroup. Finally, we show that there is a one-to-one correspondence the interval-valued fuzzy cosets of an interval-valued fuzzy subgroup A of a group G and the cosets of a certain subgroup H of G.

FURTHER RESULTS OF INTUITIONISTIC FUZZY COSETS

  • HUR, KUL;KANG, HEE WON;KIM, DAE SIG
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.369-388
    • /
    • 2005
  • First, we prove a number of results about intuitionistic fuzzy groups involving the notions of intuitionistic fuzzy cosets and intuitionistic fuzzy normal subgroups which are analogs of important results from group theory. Also, we introduce analogs of some group-theoretic concepts such as characteristic subgroup, normalizer and Abelian groups. Secondly, we prove that if A is an intuitionistic fuzzy subgroup of a group G such that the index of A is the smallest prime dividing the order of G, then A is an intuitionistic fuzzy normal subgroup. Finally, we show that there is a one-to-one correspondence the intuitionistic fuzzy cosets of an intuitionistic fuzzy subgroup A of a group G and the cosets of a certain subgroup H of G.

  • PDF

INTUITIONISTIC FUZZY NORMAL SUBGROUP AND INTUITIONISTIC FUZZY ⊙-CONGRUENCES

  • Hur, Kul;Kim, So-Ra;Lim, Pyung-Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • We unite the two con concepts - normality We unite the two con concepts - normality and congruence - in an intuitionistic fuzzy subgroup setting. In particular, we prove that every intuitionistic fuzzy congruence determines an intuitionistic fuzzy subgroup. Conversely, given an intuitionistic fuzzy normal subgroup, we can associate an intuitionistic fuzzy congruence. The association between intuitionistic fuzzy normal sbgroups and intuitionistic fuzzy congruences is bijective and unigue. This leads to a new concept of cosets and a corresponding concept of guotient.

ON INTUITIONISTIC FUZZY R-SUBGROUPS OF NEAR-RINGS

  • CHO YONG UK;JUN YOUNG BAE
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.665-677
    • /
    • 2005
  • The notion of normal intuitionistic fuzzy R-subgroups in near-rings is introduced, and related properties are investigated. Characterization of an intuitionistic fuzzy R-subgroup is given. Using a collection of right R-subgroups, an intuitionistic fuzzy right R-subgroup is established. Using a chain of right R-subgroups, an intuitionistic fuzzy right R-subgroup is also established.

FUZZY SUBGROUPS BASED ON FUZZY POINTS

  • Jun, Young-Bae;Kang, Min-Su;Park, Chul-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.349-371
    • /
    • 2011
  • Using the "belongs to" relation and "quasi-coincident with" relation between a fuzzy point and a fuzzy subgroup, Bhakat and Das, in 1992 and 1996, initiated general types of fuzzy subgroups which are a generalization of Rosenfeld's fuzzy subgroups. In this paper, more general notions of "belongs to" and "quasi-coincident with" relation between a fuzzy point and a fuzzy set are provided, and more general formulations of general types of fuzzy (normal) subgroups by Bhakat and Das are discussed. Furthermore, general type of coset is introduced, and related fundamental properties are investigated.

OPERATOR DOMAINS ON FUZZY SUBGROUPS

  • Kim, Da-Sig
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.75-83
    • /
    • 2001
  • The various fuzzy subgroups of a group which are admissible under operator domains are studied. In particular, the classes of all inner automorphisms, automorphisms, and endomorphisms are applied on the fuzzy subgroups of a group. As results, several theorems and examples concerning the fuzzy subgroups following from these kinds of operator domains are obtained. Moreover, we prove that a necessary condition for a fuzzy subgroup to be characteristic is that the center of the fuzzy subgroup is characteristic.

  • PDF

FUZZY HOMOMORPHISM THEOREMS ON GROUPS

  • Addis, Gezahagne Mulat
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.373-385
    • /
    • 2018
  • In this paper we introduce the notion of a fuzzy kernel of a fuzzy homomorphism on groups and we show that it is a fuzzy normal subgroup of the domain group. Conversely, we also prove that any fuzzy normal subgroup is a fuzzy kernel of some fuzzy epimorphism, namely the canonical fuzzy epimorphism. Finally, we formulate and prove the fuzzy version of the fundamental theorem of homomorphism and those isomorphism theorems.