• Title/Summary/Keyword: fuzzy modeling

Search Result 736, Processing Time 0.031 seconds

AN INTERPOLATIVE FUZZY INFERENCE METHOD AND ITS APPLICATION

  • SHIMAKAWA, Manabu;MURAKAMI, Shuta
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.556-561
    • /
    • 1998
  • This paper deals with our proposed fuzzy inference method, in which the fuzzy relation is represented by the membership functions of the antecedent and consequent parts, it is not used any fuzzy composition. The strong point of this method is that the membership function of an inferred conclusion has a simple shape and thus its meaning can be interpreted easily. Firstly, the proposed method is explained, and then it is applied to fuzzy modeling of distributed data.

  • PDF

Multistage Fuzzy Production Systems Modeling and Approximate Reasoning Based on Fuzzy Petri Nets (다단계 퍼지추론 시스템의 퍼지 페트리네트 모델링과 근사추론)

  • 전명근
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.84-94
    • /
    • 1996
  • In this work, a fuzzy petri net model for modeling a general form of fuzzy production system which consists of chaining fuzzy production rules and so requires multistage reasoning process is presented. For the obtained fuzzy petri net model, the net will be transformed into some matrices, and also be systematically led to an algebraic form of a state equation. Since it is fond that the approximate reasoning process in fuzzy systems corresponds to the dynamic behavior of the fuzzy petri net, it is further shown that the multistage reasoning process can be carried out by executing the state equation.

  • PDF

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.

A study on the novel Neuro-fuzzy network for nonlinear modeling (비선형 모델링에 대한 새로운 뉴로-퍼지 네트워크 연구)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.791-793
    • /
    • 2000
  • The fuzzy inference system is a popular computing framework based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantage of fuzzy approach over traditional ones lies on the fact that fuzzy system does not require a detail mathematical description of the system while modeling. As modeling method. the Group Method of Data Handling(GMDH) is introduced by A.G. Ivakhnenko GMDH is an analysis technique for identifying nonlinear relationships between system's inputs and output. We study a Novel Neuro-Fuzzy Network (NNFN) in this paper. NNFN is a network resulting from the combination of a fuzzy inference system and polynomial neural network(PNN) (7) which is advanced structure of GMDH. Simulation involve a series of synthetic as well as experimental data used across various neurofuzzy systems.

  • PDF

A ESLF-LEATNING FUZZY CONTROLLER WITH A FUZZY APPROXIMATION OF INVERSE MODELING

  • Seo, Y.R.;Chung, C.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.243-246
    • /
    • 1994
  • In this paper, a self-learning fuzzy controller is designed with a fuzzy approximation of an inverse model. The aim of an identification is to find an input command which is control of a system output. It is intuitional and easy to use a classical adaptive inverse modeling method for the identification, but it is difficult and complex to implement it. This problem can be solved with a fuzzy approximation of an inverse modeling. The fuzzy logic effectively represents the complex phenomena of the real world. Also fuzzy system could be represented by the neural network that is useful for a learning structure. The rule of a fuzzy inverse model is modified by the gradient descent method. The goal is to be obtained that makes the design of fuzzy controller less complex, and then this self-learning fuzz controller can be used for nonlinear dynamic system. We have applied this scheme to a nonlinear Ball and Beam system.

  • PDF

Fuzzy-Neural Modeling of a Human Operator Control System (인간 운용자 제어시스템의 퍼지-뉴럴 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.474-480
    • /
    • 2007
  • This paper presents an application of intelligent modeling method to manual control system with human operator. Human operator as a part of controller is difficult to be modeled because of changes in individual characteristics and operation environment. So in these situation, a fuzzy model developed relying on the expert's experiences or trial and error may not be acceptable. To supplement the fuzzy model block, a neural network based modeling error compensator is incorporated. The feasibility of the present fuzzy-neural modeling scheme has been investigated for the real human based target tracking system.

A transformed input-domain approach to fuzzy modeling-KL transform approch (입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식)

  • 김은태;박민기;이수영;박민용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method

  • Joo, Young-Hoon;Lee, Veun-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.121-126
    • /
    • 2003
  • In this paper, we propose a new wavelet-based fuzzy modeling using a DNA coding method. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic informations based on the biological DNA. The proposed method can construct a fuzzy model using the wavelet transform, in which the coefficients are identified by the DNA coding method. Thus, we can effectively get the fuzzy model of the nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with modeling method using the conventional GA.

Rule-Based Fuzzy Polynomial Neural Networks in Modeling Software Process Data

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Experimental software datasets describing software projects in terms of their complexity and development time have been the subject of intensive modeling. A number of various modeling methodologies and modeling designs have been proposed including such approaches as neural networks, fuzzy, and fuzzy neural network models. In this study, we introduce the concept of the Rule-based fuzzy polynomial neural networks (RFPNN) as a hybrid modeling architecture and discuss its comprehensive design methodology. The development of the RFPNN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the RFPNN results from a synergistic usage of RFNN and PNN. RFNN contribute to the formation of the premise part of the rule-based structure of the RFPNN. The consequence part of the RFPNN is designed using PNN. We discuss two kinds of RFPNN architectures and propose a comprehensive learning algorithm. In particular, it is shown that this network exhibits a dynamic structure. The experimental results include well-known software data such as the NASA dataset concerning software cost estimation and the one describing software modules of the Medical Imaging System (MIS).