• Title/Summary/Keyword: fuzzy logic model

Search Result 696, Processing Time 0.027 seconds

Design and Evaluation of a Fuzzy Logic-based Selective Paging Method for Wireless Mobile Networks (무선 이동망을 위한 퍼지 논리 기반 선택적 페이징 방법의 설계 및 평가)

  • 배인한
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.289-297
    • /
    • 2004
  • State-of-the-art wireless communication networks allow dynamic relocation of mobile terminals. A location management mechanism is required to keep track of a mobile terminal for delivering incoming calls. In this paper, we propose a fuzzy logic-based selective paging method to reduce paging cost. In the proposed fuzzy logic-based location management method, the location update uses the area-based method that uses direction-based together with movement-based methods, and the location search uses the fuzzy logic-based selective paging method based on the mobility information of mobile terminals. A partial candidate paging area is selected by fuzzy control rules, then the fuzzy logic-based selective paging method pages only the cells within the partial candidate paging area. The performance of proposed fuzzy logic-based location management method is to be evaluated by both an analytical model and a simulation, and is compared with those of LA and BVP methods. From these evaluation results, we know that the proposed fuzzy logic-based location management method provide better performance than other location management methods.

A comparison of output characteristics in Fuzzy logic, PID. & Sliding mode control (퍼지논리, PID. 슬라이딩모드 제어의 응답특성 비교)

  • Baek, Nam-eok;Jung, Sang-Yong;Yang, Won-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.803-805
    • /
    • 1999
  • Robust fuzzy logic control, PID control, and sliding mode controllers are designed to control the speed of a third order linear time-invariant model of a motor. The step response performance of each controller, applied to the motor plant, is Presented. We conclude fuzzy logic control can be a useful tool for the control engineering.

  • PDF

Optimal Learning of Fuzzy Neural Network Using Particle Swarm Optimization Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.421-426
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Fuzzy Inference Network and Search Strategy using Neural Logic Network (신경논리망을 이용한 퍼지추론 네트워크와 탐색전략)

  • 이말례
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule - inference network. and the traditional propagation rule is modified.

  • PDF

The study on the Algorithm for Desing of Fuzzy Logic Controller Using Neural Network (신경회로망을 이용한 퍼지제어기 설계 알고리즘에 관한 연구)

  • 채명기;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.243-248
    • /
    • 1996
  • In this paper, a general neural-network-based connectionist model, called Fuzzy Neural Network(FNN), is proposed for the realization of a fuzzy logic control system. The proposed FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such FNN can be constructed from training examples by learning rule, and the connectionist structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Computer simulation examples will be presented to illustrate the performance and applicability of the proposed FNN, and their associated learning algorithms.

  • PDF

Evolutionary design of Takagi-Sugeno type fuzzy model for nonlinear system identification and time series

  • Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.1-93
    • /
    • 2001
  • An evolutionary approach for the design of Fuzzy Logic Systems(FLSs) is proposed. Membership functions(MFs) in Takagi-Sugeno type fuzzy logic system is optimized through evolutionary process. Output singleton values are obtained through pseudo-inverse method. The proposed technique is unique for that, to prevent overfilling phenomenon, limited-level RBF membership functions are used and the new fitness function is invented. To show the effectiveness of the proposed method, some simulations results on model identification are given.

  • PDF

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System (기준 모델 적응 퍼지 시스템을 이용한 유도전동기의 속도 센서리스 제어)

  • Choi, Sung-Dae;Kang, Sung-Ho;Ko, Bong-Woon;Nam, Hoon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2064-2066
    • /
    • 2002
  • This paper proposes Model Reference Adaptive Fuzzy System(MRAFS) using Fuzzy Logic Controller(FLC) as a adaptive laws in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

The emotional evaluation of color pattern based on information fusion (정보융합 기법을 이용한 칼라 패턴의 감성 평가)

  • 김성환;엄경배;이준환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.23-27
    • /
    • 2000
  • In this paper, we propose an emotional evaluation model based on information fusion. This model can transform the physical features of a color pattern to the emotional features. Our proposed model consists of the fuzzy logic system and neural network model. The evaluation values produced by them were fused. The model shows comparable performances to the neural network and fuzzy logic system for the approximation of the nonlinear transforms. We believe the evaluated results of a color pattern can be used to the emotion-based color image retrievals.

  • PDF

Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model

  • Beycioglu, Ahmet;Gultekin, Adil;Aruntas, Huseyin Yilmaz;Gencel, Osman;Dobiszewska, Magdalena;Brostow, Witold
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.247-255
    • /
    • 2017
  • This study aimed to develop a Rule Based Mamdani Type Fuzzy Logic (RBMFL) model to predict the flexural strengths and compressive strengths of blended cements under elevated temperatures. Clinoptilolite was used as cement substitution material in the experimental stage. Substitution ratios in the cement mortar mix designs were selected as 0% (reference), 5%, 10%, 15% and 20%. The data used in the modeling process were obtained experimentally, after mortar specimens having reached the age of 90 days and exposed to $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ temperatures for 3 hours. In the RBMFL model, temperature ($C^{\circ}$) and substitution ratio of clinoptilolite (%) were inputs while the compressive strengths and flexural strengths of mortars were outputs. Results were compared by using some statistical methods. Statistical comparison results showed that rule based Mamdani type fuzzy logic can be an alternative approach for the evaluation of the mechanical properties of concrete under elevated temperature.