• Title/Summary/Keyword: fuzzy learning

Search Result 980, Processing Time 0.028 seconds

Fuzzy iterative learning controller for dynamic plants (퍼지 반복 학습제어기를 이용한 동적 플랜트 제어)

  • 유학모;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.499-502
    • /
    • 1996
  • In this paper, we propose a fuzzy iterative learning controller(FILC). It can control fully unknown dynamic plants through iterative learning. To design learning controllers based on the steepest descent method, it is one of the difficult problems to identify the change of plant output with respect to the change of control input(.part.e/.part.u). To solve this problem, we propose a method as follows: first, calculate .part.e/.part.u using a similarity measure and information in consecutive time steps, then adjust the fuzzy logic controller(FLC) using the sign of .part.e/.part..u. As learning process is iterated, the value of .part.e/.part.u is reinforced. Proposed FILC has the simple architecture compared with previous other controllers. Computer simulations for an inverted pendulum system were conducted to verify the performance of the proposed FILC.

  • PDF

Takagi-Sugeno Fuzzy Model-based Iterative Learning Control Systems: A Two-dimensional System Theory Approach

  • Chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.3-169
    • /
    • 2001
  • This paper introduces a new approach to analysis of error convergence for a class of iterative learning control systems. First, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established in the form of T-S fuzzy model. We analysis the error convergence in the sense of induced 2 L -norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative learning controller design problem to guarantee the error convergence can be reduced to linear matrix inequality problems. In comparison with others, our learning algorithm ...

  • PDF

Fuzzy Learning Control for Multivariable Unstable System (불안정한 다변수 시스템에 대한 퍼지 학습제어)

  • 임윤규;정병묵;소범식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.808-813
    • /
    • 1999
  • A fuzzy learning method to control an unstable and multivariable system is presented in this paper, Because the multivariable system has generally a coupling effect between the inputs and outputs, it is difficult to find its modeling equation or parameters. If the system is unstable, initial condition rules are needed to make it stable because learning is nearly impossible. Therefore, this learning method uses the initial rules and introduces a cost function composed of the actual error and error-rate of each output without the modeling equation. To minimize the cost function, we experimentally got the Jacobian matrix in the operating point of the system. From the Jacobian matrix, we can find the direction of the convergence in the learning, and the optimal control rules are finally acquired when the fuzzy rules are updated by changing the portion of the errors and error rates.

  • PDF

Fuzzy Learning Vector Quantization based on Fuzzy k-Nearest Neighbor Prototypes

  • Roh, Seok-Beom;Jeong, Ji-Won;Ahn, Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.84-88
    • /
    • 2011
  • In this paper, a new competition strategy for learning vector quantization is proposed. The simple competitive strategy used for learning vector quantization moves the winning prototype which is the closest to the newly given data pattern. We propose a new learning strategy based on k-nearest neighbor prototypes as the winning prototypes. The selection of several prototypes as the winning prototypes guarantees that the updating process occurs more frequently. The design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the proposed learning strategy.

Hybrid Fuzzy Learning Controller for an Unstable Nonlinear System

  • Chung, Byeong-Mook;Lee, Jae-Won;Joo, Hae-Ho;Lim, Yoon-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.79-83
    • /
    • 2000
  • Although it is well known that fuzzy learning controller is powerful for nonlinear systems, it is very difficult to apply a learning method if they are unstable. An unstable system diverges for impulse input. This divergence makes it difficult to learn the rules unless we can find the initial rules to make the system table prior to learning. Therefore, we introduced LQR(Linear Quadratic Regulator) technique to stabilize the system. It is a state feedback control to move unstable poles of a linear system to stable ones. But, if the system is nonlinear or complicated to get a liner model, we cannot expect good results with only LQR. In this paper, we propose that the LQR law is derived from a roughly approximated linear model, and next the fuzzy controller is tuned by the adaptive on-line learning with the real nonlinear plant. This hybrid controller of LQR and fuzzy learning was superior to the LQR of a linearized model in unstable nonlinear systems.

  • PDF

An Adaptive Tutoring System based on Fuzzy sets for Learning by Level (수준별 학습을 위한 퍼지 집합 기반 적응형 교수 시스템)

  • Choi, Sook-Young;So, Ji-Sook;Lee, Sun-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.121-135
    • /
    • 2003
  • This paper proposes a web-based adaptive tutoring system based on fuzzy set that provides learning materials and questions dynamically according to students' knowledge state, and gives advices for the learning after an evaluation. For this, we design a courseware knowledge structure systematically and then construct a fuzzy level set on the basis of it considering importance of learning targets, difficulty of learning materials and relation degree between learning targets and learning materials. Using the fuzzy level set, our system offers learning materials and questions to adapt to individual students. Moreover, a result of the test is evaluated with fuzzy linguistic variable. Appling the fuzzy concept to the tutoring system could naturally consider and deal with various and uncertain items of learning environment thus could offer more flexible and effective instruction-learning methods.

  • PDF

The wavelet neural network using fuzzy concept for the nonlinear function learning approximation (비선형 함수 학습 근사화를 위한 퍼지 개념을 이용한 웨이브렛 신경망)

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.397-404
    • /
    • 2002
  • In this paper, it is proposed wavelet neural network using the fuzzy concept with the fuzzy and the multi-resolution analysis(MRA) of wavelet transform. Also, it wishes to improve any nonlinear function learning approximation using this system. Here, the fuzzy concept is used the bell type fuzzy membership function. And the composition of wavelet has a unit size. It is used the backpropagation algorithm for learning of wavelet neural network using the fuzzy concept. It is used the multi-resolution analysis of wavelet transform, the bell type fuzzy membership function and the backpropagation algorithm for learning. This structure is confirmed to be improved approximation performance than the conventional algorithms from one dimension and two dimensions function through simulation.

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

Fuzzy Set Based Agent System for Adaptive Tutoring (적응형 교수 학습을 위한 퍼지 집합 기반 에이젼트 시스템)

  • Choi, Sook-Young;Yang, Hyung-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.321-330
    • /
    • 2003
  • This paper proposes an agent-based adaptive tutoring system that monitors learning process of learners' and provides learning materials dynamically according to the analyzed learning character. Furthermore, it uses fuzzy concept to evaluate learners' ability and to provide learning materials appropriate to the level of learners'. For this, we design a courseware knowledge structure systematically and then construct a fuzzy level set on the basis of it considering importance of learning targets, difficulty of learning materials and relation degree between learning targets and learning materials. Using agent, monitoring continually the learning process of learners 'inferencing to offer proper hints in case of incorrect answer in learning assesment, composing dynamically learning materials according to the learning feature and the evaluation of assesment, our system implements effectively adaptive instruction system. Moreover, appling the fuzzy concept to the system could naturally consider and ideal with various and uncertain items of learning environment thus could offer more flexible and effective instruction-learning methods.

A Fuzzy Neural Network: Structure and Learning

  • Figueiredo, M.;Gomide, F.;Pedrycz, W.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1171-1174
    • /
    • 1993
  • A promising approach to get the benefits of neural networks and fuzzy logic is to combine them into an integrated system to merge the computational power of neural networks and the representation and reasoning properties of fuzzy logic. In this context, this paper presents a fuzzy neural network which is able to code fuzzy knowledge in the form of it-then rules in its structure. The network also provides an efficient structure not only to code knowledge, but also to support fuzzy reasoning and information processing. A learning scheme is also derived for a class of membership functions.

  • PDF