Fifth IFSA World Conéress (1993), 1171-1174

A Fuzzy Neural Network: Structure and Learning

M. Figueiredo®, F. Gomide*, W. Pedrycz?

* UNICAMP / FEE / DCA

CP. 6101

13081-970 - Campinas - SP - Brazil
e-mail: gomide@dca.fee.unicamp.br

University of Manitoba / DECE

R3T 2N2 - Winnipeg - Manitoba - Canada
e-mail: pedrycz@eeserv.ee.umanitoba.ca

Abstract

A promising approach to get the benefits of neural
networks and fuzzy logic is to combine them into an in-
tegrated system to merge the computational power of neural
networks and the representation and reasoning properties of
fuzzy logic. In this context, this paper presents a fuzzy neural
network which is able to code fuzzy knowledge in the form of
if-then rules in its structure. The network also provides an ef-
ficient structure not only to code knowledge, but also to sup-
port fuzzy reasoning and information processing. A learning
scheme is also derived for a class of membership functions.

1-Introduction

A promising approach to get both the benefits of neural
networks and fuzzy logic systems and to solve their respective
problems is to combine them into an integrated system such
that we can bring the learning and computational power of
neural networks into the fuzzy logic systems, and the repre-
sentation and reasoning of fuzzy logic systems into the neural
networks. For system modeling and control purposes their
combination should provide an approach where structured
knowledge of complex ill-defined systems is processed in a
qualitative way, allowing reasoning and consideration of es-
sential a priori information and performance criteria. Learn-
ing features should provide training procedures for synthesis,
design, and implementation. Systems that combine neural
network with fuzzy logic are called neurofuzzy systems.

The fusion of fuzzy logic with neural network is, since in
its early stages, concerned with the developments of multi-
input, multi-output neuron models [4]. More recently, the
compositional operator and fuzzy relations were used in a
neurofuzzy structure proposed by Pedrycz [6]. Pedrycz's
network represents knowledge at a very aggregated level. The
inputs and outputs are fuzzy sets and the coded knowledge
can not be extracted in fuzzy if-then rule format. Lin and Lee
[5] describe a fuzzy neural network structure which is based
on the possibilistic inference method rather than compositional

one. The fuzzy predicate membership functions and the infer-
ence operators are represented as node parameters. This
characteristic is not appropriate to be handled by neurocom-
puting. However, fuzzy rules are easily identified in the net-
work structure. Gomide and Rocha {2] and Keller et al. [3]
describe compositional based fuzzy neural network and pos-
sibilistic based fuzzy neural network respectively.

In t his work, a new fuzzy neural network structure is pro-
posed, exploring a particular, simplified approach for fuzzy
reasoning. Given a set of fuzzy if-then rules, the network to-
pology easily allows their codification and processing.
Otherwise, rules can be discovered if a set of input-output
data is provided. For this task, a learning procedure for a par-
ticular class of membership functions is also presented. Due to
its structure, initial knowledge can easily be imbedded in the
network, speeding up learning and rules tuning.

2-Fuzzy Rules Based Neural Network
The structure of the system under discussion will be cen-
tered around a set of "if-then" conditional statements (rules)

given as follows:

input premise: X, is 4, and ... X, is 4,,.

rule 1: IfX,is A and ... X, is A, thenyis g".
rule M IfX,is A and ... X,,is A}, theny is g~.
consequence: yisg.

where: X, is a fuzzy variable, 4, and A‘J are the corresponding
fuzzy sets, while "y" is a real variable, and g a constant de-
fined in the output space. All the universes are assumed to be
discrete. Note that the essence of the above system is to pro-
vide approximation of "y" via a series of fixed values
(quantization values). To simplify the notation we adopt
simplified notation denoting by z, a grade of membership of Z
at x,,

Z(x) =z,
with x, denoting a numerical value in the input space. The

numerical consequence y is determined via a sequence of the
three reasoning stages:

—1171—

1) Matching: For each rule "i" and each antecedent " we

compute the possibility measure Pj" for fuzzy sets 4; and A;

P! is given by:

P = max {min (a, a},)},

where this maximum is taken over all k. @1

2) Antecedent Aggregation: For each rule "i" its activation
level is computed as intersection of its subconditions,

H =min {P}},j=1,..,M 22)
J

3) Rule aggregation: the overall numerical output is com-
puted as a weighted sum:

N ..
TH'g'
_i=1
y=i=b— (23)
TH'
i=1

In (2.1) and (2.2) the maximum and minimum operators
are particular examples of T-norms and S-norms: obviously
their use will give rise to much more general and flexible
constructs.

Yy =0 (¢ (v (x))

Figure 2.1: The neuron model. X; are inputs, y output , w and ¢ are
synaptic operator and input aggregation operator, respective-
Iy,and ¢ is the decodification function.

Figure 2.2: The fuzzy neural network addressed to control system,

In this paper we borrow some recent results from the neu-
rophysiology. Usually, the synaptic operator and the input ag-
gregation operator are important neuron model specifications,

see Fig. 2.1. The biological model suggests that these oper-
ators may be implemented using any T-norm or S-norm {7].

The proposed fuzzy neural network (see Fig. 2.2) is a
feedforward architecture with five layer of neurons.

The first layer is divided into groups of neurons. Each
group corresponds to a single fuzzy variable standing in the
antecedent of this rule. This implies M groups of neurons
situated in this layer. The neurons in each of those groups are
utilized to represent a discrete universe of discourse. More
precisely, the neuron receives an input signal, transforms and
transmits it further to the second layer. In particular, a, will
be used to denote a signal transmitted by the k-th neuron
placed in the j-th group (universe). The output y is generically
given by:

y=o(u).
@)

>
xI xF

Figure 2.3: Decodification function for the input neuron.

In this work we will assume that the transformation
operation of the input neuron applies to a pointwise numerical
information (singleton). For an interval x, such that X, =[x,
Xg), the transformation performed by the neuron representing
the k-th interval is given by, (see also Fig. 2.3);

1, uj € [xI: xF);

o(u) = {

0, otherwise.

The second layer comprises N groups (N rules). For each
groups there are M neurons. This layer accomplishes the first
stage of inference namely. matching. The j-th neuron of i-th

group calculates P;. The k-th neuron of the j-th group of the
first layer connects with it through the synapse whose weight

is a, . The synaptic operator is taken as the minimum and the

input aggregation operator is implemented as the maximum,

For each group "j" of the second layer, a neuron in the
third layer determines the degree of aggregation of the ante-
cedents, see (2.2). The synapses do not modify the signal (we
may assume that the synaptic weight is fixed and equal to one,
and the synaptic operator is the algebraic product). Gomide
and Rocha [1] describe a neuron model which provides the
maximum and minimum operators. These are the neurons
which comprise the second and third layers

Each i-th neuron "i" in the third layer links with the two
neurons in the fourth layer. The aggregation operator of these
neurons is the algebraic sum. One of them connects with all
the neurons in previous layer through the synapses whose
weights are equal to gi. The synaptic processing modulates the
signal according the algebraic product. Its output constitutes
the numerator of (2.3). The other neurons also connect with
all the neurons in the previous layer. The signal Hi is received
there without any modification. The output of it is the de-
nominator of (2.3).

The last layer consists of a single neuron which role is to
compute the quotient of these two signals.

—1172—

3-Learning Method

The learning is carried out in a supervised type. We assume
that a data set of input-output pairs {(u', y}),.., (us, y3)}

where w* = (uj,..., uy,)" is given. To initiate the learning
additional information,such as the fuzzy partitions of input

space and the shape of rule fuzzy sets A; standing in the

antecedents is provided as well. To simplify the presentation,
the fuzzy set shapes are assumed to be isosceles triangles.

Let us remind that these triangle fuzzy sets should "cover"
all input domain. Each combination of fuzzy sets from the par-
titions gives rise to one fuzzy rule, the consequent part is set
to the center of domain. Then, the first phase constructs the
network and represents the initial knowledge about the struc-
ture such as all necessary fuzzy rules and preliminary fuzzy
sets of antecedent.

Within the next phase of the parametric learning the fuzzy
sets of antecedents as well as the numerical values of actions
g, residing within the rules are adjusted according.

Min (Q(y%, y2))

c;, bj,and g
subject to:
< - €l .
1-—+—7~L if (c!-b)< x, € (¢! +b)),
Ay - SERICIURELNERCALY
0, otherwise;

(2.4)

where ¢ and b} are nodal values and bounds of the triangles
fuzzy numbers, see Fig. 2.4.

7
b’ \>°,' v

Figure 2.4: The shape of the antecedent fuzzy sets.

The optimized performance index is a standard sum of
squared errors (MSE),

. . S (s _ ys)2
Qv = TSN @5)
s=1]
Due to the particular fuzzification strategy, the fuzzy set 4,
is a singleton, and consequently, the possibility measure (2.1)
is equal to:

|xJk - C;I
e

J

Cif[(e}-bl) <%, < () + b))
and (uj is a element of x ,);

0, otherwise.
(2.6)

By substituting Pj, H' and g' expressions [(2.2), (2.3) and
(2.6)], the performance index Q(.) can be made more explicit.
Considering z as being a generic parameter of the membership
functions, the gradient descent method gives rise to the
following adjustment formula,

Q(z)
oz

z(t+1) =z(t) - o, 2.7

Following the calculus suggested by Pedrycz [9], the
derivatives of the min and max operations are defined as:

dmax(x,a) _ [Lx= a

dmin(x,2) _J1 x= 2
[0, otherwise.

dx 0, otherwise. dx

The derivative of Q with respect to the quantization values
gk is computed accordingly,

g% =3 (y" - vyl (28)

For the parameters of the triangles numbers c; and b; the

respective formulas can be derived in an analogous way.
Hence,

6Q(Z) — : S S ays 6Hl aPJl
o Z(y Yd)aH, P o (2.9

Overall, the learning algorithm can be summarized by the
following steps:

Begin
eInitialize the parameters with the basic requirements;
eset iter =0

Repeat

eUpdate the parameters g¥, c;, and b, by computing
the adjustments: Az = -0Q(z)/ 0z.
eiter = iter +1
Until Q(y, y}) <€ oriter > itermax.
End.

4-Simulation Results

We next present two experiments. In the first, the network
learns from the data generated by a non linear function f(.):
[0,1]x[0,1]—[0,1]:

flx,, x,) =X, TX, - 2%,X,.

We consider 25 rules. The fuzzy partitions consist of five
fuzzy sets. The center positions and base lengths of isosceles
triangles were set in such way that the rules cover all the
domain [0,1]x[0,1]. The consequent part were set in the
center of domain. The Fig. 4.1 shows three of the initial rules
induced by the initialization step and introduced in the net-
work. The Fig. 4.2 shows the corresponding rules after learn-

ing. For all input ws the errors (y*- y}) were less than 0.1.
The results Q = Q(iteration) are shown in Fig 4.3.

~1173~

_antecedent 1

NN

antecedent 2 consequent

/
/

Figure 4.1: Example [: three initial rules.

antecedent 1 antecedent 2 consequent

.

Figure 4.2: Example 1: respective three rules after a learning section.

a _
50
iter
107 30"

50

Figure 4.3: Example 1: The behavior of performance index along the
learning process.

antecedent 2

Figure 4.4: Example 2: three rules provided by an expert.

antecedent 1 consequent

L

antecedent 2

/N

PN
A

antecedent 1

A

I

Figure 4.5: Example 2: respective rules introduced into network.

consequent

antecedent 1 antecedent 2

consequent

oA |
A |

A

Figure 4.6: Example 2: the same rules extracted after a learning section.

In the next example the network learns rules provided by
an expert. Sixteen rules are considered. The domains of the
two antecedents and of the consequent are [-12,12]. The Fig.
4.4 shows three correct rules. The initial rules generated and
learned rules are illustrated in Fig. 4.5 and 4.6, respectively.

S-Conclusion

The aim of the paper was to construct fuzzy neural
networks. The initial knowledge in fuzzy rules can be intro-
duced into the network simultaneously to its development
(network programming or initialization). The adjustment of
the parameters of the network is carried out in a supervised
mode. The new knowledge stored into the network can be
easily extracted as fuzzy if-then rules. The simulations results
presented have shown that the network adaptation is effective
in the sense that the extracted fuzzy rules, after the learning
phase, provide an approximation of the knowledge encoded in
the data set. Further work will focus on the learning methods
involving more complex rules as the rules with the number of
antecedents not provided a priori.

6-References

[1] Gomide, F. & Rocha, A., "A Neurofuzzy Components
Based on Threshold", IFAC, Silica, Spain, 1992.

2] , "Neurofuzzy Controllers",
Proceedings of lizuka-92, Japan, 1992.

[3] Keller, JM., Yager, RR. and Tahami, H., "Neural
Network Implementation of Fuzzy Logic", Fuzzy Sets
and Systems, 45, 1992.

[4] Lee, S.C., "Fuzzy sets and Neural network”, J. of
Cybernetics, vol.4, no 2, pp. 83-103,1974.

[5] Lin, CT. & Lee, G.C.S., "Neural-Network-Based
Fuzzy Logic Control and Decision System", TEEE
Transactions on Systems, Man, and Cybemnetics,
40(12), Dez, 1991.

[6] Pedrycz, W., '"Neurocomputations in Relational
Systems", IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(3), Mar, 1991.

[7] Rocha, AF., Neural Nets, Berlim, Springer-Verlag,
1992

Acknowledgments: The first author acknowledges the
support of CNPQ-RHAE 360106/92-7. The second is
gratefull for CNPQ grant #300729/86-3.

—1174—

