• Title/Summary/Keyword: fuzzy interest

Search Result 108, Processing Time 0.024 seconds

Application of Sliding Mode Fuzzy Control with Disturbance Estimator to Benchmark Problem for Wind Excited Building (풍하중을 받는 벤치마크 구조물의 진동제어를 위한 외란 예측기가 포함된 슬라이딩 모드 퍼지 제어)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.246-250
    • /
    • 2000
  • A distinctive feature in vibration control of a large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. The sliding mode fuzzy control (SMFC), which is of interest in this study, may use not only the structural response measurement but also the wind force measurement. Hence, an adaptive disturbance estimation filter is introduced to generate a wind force vector at each time instance based on the measured structural response and the stochastic information of the wind force. The structure of the filter is constructed based on an auto-regressive with auxiliary input model. A numerical simulation is carried out on a benchmark problem of a wind-excited building. The results indicate that the overall performance of the proposed SMFC is as good as the other methods and that most of the performance indices improve as the adaptive disturbance estimation filter is introduced.

  • PDF

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

Fuzzy Logic based Propagation Limiting Method for message routing in Wireless Sensor Networks (무선 센서 네트워크에서 메시지 라우팅을 위한 퍼지로직 기반의 전달 영역 제한 기법)

  • Chi, Sang-Hoon;Cho, Tae-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.8-12
    • /
    • 2005
  • 최근 마이크로 센서와 무선 통신 기술의 진보는 센서 네트워크의 발전을 가능하게 하였다. 이와 같은 사실은 무선 센서 네트워크를 위한 수많은 라우팅 프로토콜의 개발로 이어졌으며, 다양한 구조의 알고리즘들이 제안되었다. 특히, 디렉티드 디퓨젼(Directed Diffusion; DD)은 데이터 중심 기반의 라우팅 알고리즘으로 속성 칼 쌍을 이용하여 통신하는 센서 네트워크의 한 패러다임이라고 할 수 있다. 그러나 기존의 DD에서는 작업을 요청하는 질의 메시지(interest message)가 전체 센서 네트워크에 플러딩(flooding)되는데, 이러한 과정은 에너지 소비 측면에서 볼 때 매우 비효율적이라고 할 수 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 센서 노드의 에너지와 밀도 정보를 고려한 임계값을 이용하여 데이터의 전송 지역을 제한함으로서, 네트워크의 에너지 소비를 줄일 수 있는 새로운 메시지 전달영역 제한기법(propagation limiting method; PLM)을 제안한다. 퍼지 규칙 기반 시스템은 센서 필드에 배치된 노드들의 에너지와 밀도 정보를 입력 파라미터로 사용하여 메시지 라우팅을 위한 임계값 결정에 사용된다 본 연구에서 제안된 기법을 사용하여 센서 네트워크의 에너지 소비를 실험한 결과 기존에 제안되었던 알고리즘들에 비해 상대적으로 높은 효율성을 나타내었으며, 전체적으로 네트워크의 수명도 연장할 수 있었다.

  • PDF

Automatic Defect Detection using Fuzzy Binarization and Brightness Contrast Stretching from Ceramic Images for Non-Destructive Testing (비파괴 검사를 위한 개선된 퍼지 이진화와 명암 대비 스트레칭을 이용한 세라믹 영상에서의 결함 영역 자동 검출)

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2121-2127
    • /
    • 2017
  • In this paper, we propose a computer vision based automatic defect detection method from ceramic image for non-destructive testing. From region of interest of the image, we apply brightness enhancing stretching algorithm first. One of the strength of our method is that it is designed to detect defects of images obtained from various thicknesses, that is, 8, 10, 11, 16, and 22 mm. In other cases we apply histogram based binarization algorithm. However, for 8 mm case, it may have false positive cases due to weak brightness contrast between defect and noise. Thus, we apply modified fuzzy binarization algorithm for 8 mm case. From the experiment, we verify that the proposed method shows stronger result than our previous study that used Blob labelling for all five thickness cases as expected.

A Development of Driving Simulator using Fuzzy Rules and Neural Network (퍼지규칙 및 신경망을 이용한 운전 시뮬레이터 개발)

  • Hong You-Sik;Kim Tae-Dal;Kim Man-Bae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.142-148
    • /
    • 2006
  • Considering the domestic traffic environment and the increase of traffic accidents, we have been asked to exactly analyze the main causes of accidents for the accident-experienced drivers to be rehabilitated. In this thesis we present the development process and results of a driving simulator using the IPDE method in the interest of safe driving and driving rehabilitation. Through this Driving simulation development the rehabilitated driver has the possibility of experiencing the real driving situation with the driving aptitude and examines the reasons of accidents. Through the examinations the driver has the chance to correct the deformities of driving by choosing the explanatory scenes, and through this process the driver is able to develop the capability to react in the real situation. However this driving simulation system is one of the best developed, depending on weather and road condition the braking distance may change. Therefore the fuzzy rule and neural network have been used in this thesis to solve previously mentioned problem. The simulation exactly calculated the road and weather conditions to adjust the breaking intensity.

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.

Digital Switching Filter Algorithm using Modified Fuzzy Weights and Combined Weights in Mixed Image Noise Environment (복합 영상 잡음 환경에서 변형된 퍼지가중치 및 결합가중치를 사용한 디지털 스위칭 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.645-651
    • /
    • 2021
  • With the advent of the Fourth Industrial Revolution, modern society uses a diverse pool of devices. In this context, there is increasing interest in removing various kinds of noise arising in data transmission. However, it is difficult to restore image that damaged by mixed noise, and a digital filter that effectively restores an image according to the characteristics of the noise is required. In this paper, we propose a digital switching filter algorithm to remove mixed noise generated during digital image transmission. The proposed algorithm switches the filtering process through noise judgment and reconstructs the image using fuzzy weights and combined weights based on the pixel values inside the mask. To evaluate the proposed algorithm, we compared it with existing filter algorithms through simulation. Filtering results were expanded and compared for visual evaluation, and PSNR comparison was used for quantitative evaluation.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

A Context-Awareness Modeling User Profile Construction Method for Personalized Information Retrieval System

  • Kim, Jee Hyun;Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2014
  • Effective information gathering and retrieval of the most relevant web documents on the topic of interest is difficult due to the large amount of information that exists in various formats. Current information gathering and retrieval techniques are unable to exploit semantic knowledge within documents in the "big data" environment; therefore, they cannot provide precise answers to specific questions. Existing commercial big data analytic platforms are restricted to a single data type; moreover, different big data analytic platforms are effective at processing different data types. Therefore, the development of a common big data platform that is suitable for efficiently processing various data types is needed. Furthermore, users often possess more than one intelligent device. It is therefore important to find an efficient preference profile construction approach to record the user context and personalized applications. In this way, user needs can be tailored according to the user's dynamic interests by tracking all devices owned by the user.

Vision-Based Indoor Localization Using Artificial Landmarks and Natural Features on the Ceiling with Optical Flow and a Kalman Filter

  • Rusdinar, Angga;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • This paper proposes a vision-based indoor localization method for autonomous vehicles. A single upward-facing digital camera was mounted on an autonomous vehicle and used as a vision sensor to identify artificial landmarks and any natural corner features. An interest point detector was used to find the natural features. Using an optical flow detection algorithm, information related to the direction and vehicle translation was defined. This information was used to track the vehicle movements. Random noise related to uneven light disrupted the calculation of the vehicle translation. Thus, to estimate the vehicle translation, a Kalman filter was used to calculate the vehicle position. These algorithms were tested on a vehicle in a real environment. The image processing method could recognize the landmarks precisely, while the Kalman filter algorithm could estimate the vehicle's position accurately. The experimental results confirmed that the proposed approaches can be implemented in practical situations.