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Abstract 

The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential 
reflectivity and differential phase data. In many cases, time-series study of these objects’ reflectivity profile is required to properly 
characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-
band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity 
profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-
linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes 
proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude 
range of 0.25 to 10 km and an area spanning over hundreds of thousands km2. Discrete numerical simulations show the validity of the 
proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable. 
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1. Introduction 
 

Ground based radar systems are essential tool for real-time 
monitoring of rapidly developing aerial events and in assessing 
potential threat level posed by these events in the coming hours 
or days. Thus, the ability to accurately track and characterize 
radar objects in question for object classification is of particular 
importance in interpreting the aerial event for the strategic 
decision making that follows. The radar objects of interest that 
are covered within the scope of this paper range anything from 
amorphous weather clouds, thunder storms, airplane chaff, non-
weather related hazardous fallout such as volcanic ash cloud 
[1] and other non-generic anomalous noises, etc. The genesis 
and time evolution characteristics of these deformable radar 
structures have an implication in revealing the nature of these 
radar objects and assessing threats based on situational 
awareness. In case of storm cells, the primary goal of 4D 
visualization and interpretation process is to locate and track 
already formed or potentially emerging storm cells in 
sequential radar images, and identify key features that provide 
clues to determine the storm severity and likelihood of 
producing microbursts. One such key feature is cross-sectional 
cluster height versus time profile of storm cell reflectivity. This 
type of profile can provide some indications of how to identify 
the end stage of the storm cell’s life cycle, during which 
microburst and other potentially damaging weather events can 
occur. As for estimating the rainfall rate of storm cells based on 
both single and dual polarization radar measurements, different 
algorithms are used; namely, reflectivity (Zh), differential 

reflectivity (Zdr), and specific differential phase (Kdp). The 
typical rain algorithms are thus of the form R(Zh), R(Zh, Zdr), 
R(Kdp) and R(Kdp,Zdr) depending on the type of measurement 
used [2].For X-band, R(Zh) and R(Zh, Zdr) estimation suffer 
from attenuation effect of backscatter power signal while 
R(Kdp) estimation does not. Therefore Zh and Zdr need to be 
corrected prior its usage in quantitative analysis. In this paper, 
corrected reflectivity values of Zh (CZ radar volume data where 
CZ is radar volume label) which is in unit of dBZ,is used as the 
basis to track radar objects and is related to rainfall rate 
R(Zh)(mm/hr) by the following equations: 
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The rainfall rate calculation in (1) and the reflectivity 
calculation in (2) -conversion from rainfall rate -are based on 
several equations which have been proven for more than 
decades of observation. 

However, the difficulty of tracking and dynamically 
profiling cloud structures arises from the fact that these objects’ 
morphological features are not so easily definable in both still 
frame and time domain. Due to their highly deformable as well 
as splitting and merging nature over time, the overall cloud 
structure set is defined in a topological space where the idea of 
closeness, or limits, is described in terms of relationship 
between sets rather than in terms of simple Euclidean distance. 
To mitigate this difficulty, previous tracking methods of 
amorphous cloud structures make the use of spatial and 
temporal relaxation algorithms which establish movement way 
points by identifying and connecting structures’ localized 
feature points or boundary domain from 2D reflectivity 
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intensity map. Spatial relaxation labeling algorithm is 
developed by Barnard and Thompson [3] to associate one set of 
feature points selected from a stereogram to another 
corresponding set using disparity analysis. Temporal relaxation 
algorithm is developed by Zhang [4] to tackle the problem of 
storm merging and splitting by allowing single storms to be 
matched to multiple storms in adjacent image frames. Krezeski 
[5] enabled Zhang’s tracking algorithm to include the concept 
of pseudo-storm and property coherence which allows multiple 
features of a storm such as average intensity, storm size, 
velocity variance, storm shape and orientation, to be tracked 
over time in addition to storm center location. This paper takes 
rather different approach to the tracking problem by 
representing objects of interest as separate partitions in 3D 
radar images that are categorized into different reflectivity 
range, spatial and size groups, and associating selected 
partitions between subsequent image frames. 

 

 
2. Tracking System Overview 

 
The proposed tracking model is based on radar data 

transformation techniques as well as clustering algorithms. The 
model is implemented as a mean to generalize radar object 
tracking procedure in both fast and slow frames and also to 
render the procedure independent of the scale and 
morphological features of objects being tracked. The model 
also takes into consideration of logistical constraints inherently 
existing in the system such as the amount of available 
computational resources and time restriction. This is due to the 
fact that radar volume sweep is done at finite rate with 
noticeable time delay between each rotational sweep - weather 
events are only monitored at specific time intervals –and data 
collection, data transformation and sorting procedures, etc., 
must be completed within very short time window. The 
implementation of the proposed model is illustrated in Fig. 1. 

In this implementation, prior being subjected to image data 
partitioning procedure, the original site specific radar data first 
undergoes coordinate system transformation from spherical to 
Cartesian system–radar data in UF file is stored in spherical 
coordinate system. This transformation is achieved by 
extracting interpolated 2D CAPPI layers from original CZ 
volume data for equally spaced altitudes and stacking up these 
2D CAPPI layers one upon the other resulting in 3D Cartesian 
CZ volume data. After the 3D Cartesian volume data is 
constructed, it undergoes preliminary data sorting procedure 
which categorizes all individual CZ volume data points into 
two reflectivity (pixel intensity) range categories: below-
threshold and above-threshold reflectivity groups. The 
threshold CZ reflectivity is usually chosen from any values 
between -30 and 0 dBZ. This step is critical to speed up the 
overall tracking procedure by restricting the clustering 
procedure only to data points above minimal reflectivity level. 
The effect could dramatically reduce the clustering time in 
static frame. By filtering out background low intensity data 
points, this preliminary data sorting procedure produces sparse 

matrix representation of CZ volume data - containing only 
selected data points-which is then passed to static frame 
clustering procedure. Static frame clustering procedure, which 
does not require specifying the number of clusters a priori, 
automatically sorts out this sparse image data into multiple 
partitions using distance (Euclidean) similarity criteria. 
Resulting spatial partition s or groups from this procedure form 
individual cluster sets of spatially connected or neighboring 
data points. Once the static frame clustering procedure is 
completed, in order to further reduce the time taken by overall 
tracking algorithm, the size of each cluster-cardinality of 
cluster set -is computed and clusters only in select size category 
are chosen for dynamic clustering procedure which associates 
identical or similar clusters between time-series images. The 
output of such dynamic clustering procedure is a subspace 
called iso-cluster subspace where members are made up of 2-
tuple cluster identifiers or clusters themselves in time series 
that are determined to be similar by criteria of cluster size and 
cluster center location. This determination of the 
correspondence between a set of selected features objects in 
subsequent 3D radar images enables us to obtain characteristic 
reflectivity profiles of objects of interest in time series. The 
characteristic reflectivity profile of given radar object is based 
on frequency count versus reflectivity plot of data points within 
the given cluster of interest. 

 

 
3. Static Frame Clustering Method 

 
3.1. Description of Zone-Linkage Clustering Method 

 
First comprehensive foundations on clustering techniques 

were published by Tryon [6] in 1939. Other introductory 

Fig. 1. Proposed model of radar objects tracking and profiling.
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publications on clustering methods include Hartigan [7] and 
Murtagh [8], etc. These techniques have traditionally been 
applied to classification problems which are mostly concerned 
with problems of how to organize observed data into 
meaningful structures. Clustering techniques are often used in 
pattern recognition problems and remote sensing applications 
to perform image decomposition prior feature extraction 
procedure. The clustering procedure, in essence, partitions N 
data values into M groups so that any two data points belonging 
to the same group are more similar than those belonging to 
different groups. There are many clustering methods that exist 
in the current literature for image spectral analysis. However, 
for the purpose of fulfilling the execution time requirement of 
tracking procedure, a novel, time-efficient clustering method is 
proposed to significantly reduce the time taken by static frame 
clustering procedure. The novel method or zone-linkage 
clustering method, is loosely based on single-pass method or 
leader method [9] in that it falls within a nonhierarchical 
clustering category and all elements are treated as individual 
clusters at the start and at each iteration step, each element is 
compared with clusters formed so far and either added to the 
closest or used to start (lead) a new cluster if it is insufficiently 
close to any of the existing clusters. However, the proposed 
method diverges from single-pass method in its implementation 
and time complexity– single-pass and zone-linkage have 
O(n2)and O(kN)(or simply O(N)) time complexity respectively 
where k is the number data points enclosed by local hyper-
sphere or neighborhood volume space to be scanned. In zone-
linkage clustering, each data points in input space are 
processed only once for neighborhood volume scan to detect 
the presence of immediately neighboring data points. Detected 
neighborhood data points within the hyper-sphere are marked 
(flagged) and assigned cluster membership (added to cluster 
membership list). The volume scan then moves to next item in 
the cluster membership list until all members are processed– 
volume scan is performed around each of these items. Since 
detected data points are flagged, already marked (added) 
members are being skipped from being added again. If no 
further members are added to the cluster list, the process jumps 
to the next cluster and the same procedure is repeated until all 
data points in input space are processed. The key feature of this 
algorithm is that neighborhood volume scan within the hyper-
sphere is skipped for already flagged (membership assigned) 
data points which dramatically improves the speed of the 
procedure. 

 
3.2. Zone-Linkage Clustering Algorithm 
 
Given: 
τref Threshold reflectivity 
pi 3-tuple or coordinate point in a 3D grid (Euclidean) space
r Reflectivity value at pi 
S Set of all coordinate points (3-tuple) in input 3D grid space
A Set of all coordinate points (3-tuple) with reflectivity below 

threshold valueτref 
B Set of all coordinate points (3-tuple) with reflectivity above or 

equal to threshold valueτref 
 

Γ Set of all clusters (the number of clusters and the number of a 
given cluster’s elements are not specified a priori)

τk Radius of hypersphere or immediate neighborhood zone to be 
scanned (centered around a point).i.e.τk=2 

 
pi=(xi,yi,zi);
r: pi → r(pi); 
S={p1, p2, … , pu}; 
A={∀pi∈ S | r(pi) ≤τref}={a1, a2, … , am} with |A|=m; 
B={∀pi∈ S | r(pi) >τref}={b1, b2, … , bn}=S\A with |B|=u-m=n; 
Γ={C1,C2, …}where Ci ⊂B and ∀ i,j: i≠j, Ci ∩Cj = ∅; 

 
Input: B 
Begin: 
• Γ={∅}; C1=C2= … = {∅}; 
• j=1; 
• ∀bi∈B : 1≤i ≤ n, do(for all points with r≥τref) 

• If bi has not been assigned any cluster membership, do 
• Assign cluster membership to bi; 
• Cj=Cj ∪{bi}; 
• member_count[j] = member_count[j]+1; 
• ∀bk∈Cj :1≤ k≤|Cj|,do (until all elements of Cj is processed) 

• Generate Δk , a set of immediate neighborhood (zone) 
points around bk,; 
Δk={∀ph∈ S |||ph-bk||<τk and ph≠ bk} 
={δ1, δ2, … , δN}; where |Δk|=N for fixed τk, 
N is number of total neighborhood points of bk to be 
scanned.  

• ∀δg∈ Δk : 1≤ g≤ |Δk|, do 
• If reflectivity r(δg)≥τref and δg has not been 

assigned any cluster membership,do 
• Assign cluster membership to δg; 
• Cj=Cj ∪{δg}; 
• member_count[j]= member_count[j]+1; 

End If 
End ∀ 

End ∀ 
• Γ = Γ∪{Cj}; 
• j = j + 1; 

End If 
End ∀ 

End 
Output: Γ 
 
3.3. Simulation Results 
 
Table 1. Simulation Environment 

Environment 
Settings 

Description 

Radar Polarization Horizontal 
Test Radar Site KSN 

CPU Intel(R) Core(TM)i5 M4802.67GHz 
RAM 3072 MB 

Disk Space 80 GB 
OS Linux Ubuntu 10.10 

 
Table 2. Simulation Parameters 

Parameters Value 
Input CZ Radar Volume Size(1 

byte per radar data point) 
R×θ×φ: 980×360×15 

Total: 5,292,000 bytes 
Input 3D Grid Space Size(1 byte 

per grid or data point) 
X×Y×Z: 480 × 480 × 41 
Total: 9,446,400 bytes 

3D Input Grid Resolution X×Y×Z: 1km×1km×0.25km 
Sampling Date 2010.05.19 

 
Sampling Time 

From 10:00 To 16:30 
At 10 min interval 

Total of40 time frames 
Zth (Threshold CZ reflectivity) 0 

Sth (Threshold cluster size) 189 data points 
τk  (Radius of hyper-sphere) 2grid distance 
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To evaluate the performance of the zone-linkage clustering 
method, a simulated experiment is carried out with simulation 
environment settings and parameters shown in Table 1 and 
Table 2. 

Performance comparison between single-pass and zone-
linkage clustering methods is conducted by running each 
algorithm over 40 time frame sequences and averaging out the 
execution time – total clustering time taken divided by the 
number of time frames sequences– while retaining the same 
parameter settings. The result is shown in Table 3. 
 
Table 3. Simulation Results 

Time Measurements Single-Pass Zone-Linkage 
Total Clustering Time 
(for 40 time frames) 

41 min 21.73 
sec 

19.40 sec 

Average Clustering Time (per 
time frame) 

1 min 2.04 sec 0.485 sec 

Total Time Taken by 
Coordinate Transformation   

(for 40 time frames) 
3 min 7.11 sec 

Average Time Taken by 
Coordinate Transformation   

(per time frame) 
4.68 sec 

 
Overall data partition or decomposition of 3D radar image that 
results from reflectivity range and size range filtering is 
illustrated in Fig. 2. 

4. Dynamic Frame Clustering Method 
 

4.1. Description of Evolution-Linkage Clustering Method 
 
The evolution-linkage clustering procedure is performed 

with only reasonably sized clusters from previous step and 
intrinsically associates similar clusters in subsequent time 
frames into one group forming a subspace called iso-cluster set. 
The evolution-linkage uses the distance that separates clusters’ 
centroids and clusters’ size ratio(either volume ratio or planar 
projection area ratio) as the basis for similarity comparison. 
Other arbitrary features such as reflectivity profile can be used 
as comparison criteria. However, for the purpose of 
simultaneous monitoring of many cells at optimum frame rates, 
these features may run redundant. Cluster splitting is weighed 
in the algorithm as the algorithm starts new linkage chain of 
cells at the split point and tracks it as a separate disjoint iso-
cluster set with its own evolving characteristic features. Cluster 
merging is handled by joining two separate iso-cluster sets into 
one and tracking it as a combined feature set. The algorithm 
assigns iso-cluster membership to every clusters within 
inference time frames and no two clusters within single time 
frame will have the same iso-cluster membership. 

 
4.2. Evolution-Linkage Clustering Algorithm 

 
Given: 
 

t, v Time frame index
κ, l Cluster id
μ 2-tuple cluster identifier
T Number of inference time frames 
N Total cluster count in all inference time frames
L(t) Total cluster count in single time frame t 
ρ Centroid of cluster with μ identifier 
σ Size of cluster with μ identifier 
Π Set of all cluster identifiers within inference time frames T
Φ Set of all clusters with below-or-equal-to-threshold-size
Ψ Set of all clusters with above-threshold-size 
Ω Set of all iso-clusters
w iso-cluster set (set of 2-tuple cluster identifiers)
λt Set of all cluster id for above-threshold-size category at time 

frame t
Ξ Set of all λt within inference time frames 
dk Distance between centroids 
hk Ratio of cluster size valued between 0 and 1 
Gk Final Grade
Q Similarity Function

 
 
μ=(t,κ) where 1≤t ≤T and 1≤κ ≤ L(t); 
ρ: μ→ ρ(μ); 
σ: μ→ σ(μ); 
Π={ μ1, μ2,…, μN}; 
Φ={∀μ∈ Π | σ(μ) ≤τsize}={α1, α2, … , αe} where ε=|Φ|; 
Ψ={∀μ∈ Π | σ(μ) >τsize}={β1,β2, … , βf} where f=|Ψ|=N-ε; 
Ω={w1,w2, …}where wi ⊂ Ψ and ∀ i,j : i≠j, wi ∩ wj = ∅; 
λt={l1, l2, …} 
Ξ={ λ1, λ2,…, λT} 
 
 

 
 
 

Fig.2. 3D radar image decomposition (KSN 2010-05-19 15:00). 
(a) full echoes. (b) below-threshold-reflectivity echoes removed. 

(c) below-threshold-reflectivity echoes, below-threshold-size 
clusters removed. Total of 8 clusters remained. 

(d) below-threshold-reflectivity echoes, above-threshold-size 
clusters removed. 
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Input: Ψ,Ξ 
Begin: 
• Ω={∅}; w1=w2= … = {∅}; (number of elements is not fixed) 
• j=1; 
• ∀t∈ℕ: 1≤ t≤ T, do (start with t=T, go in reverse time order) 

• ∀ li∈ λt:1≤ i≤ |λt| ,do 
• If li has not been assigned any iso-cluster membership, do 

• Assign iso-cluster membership to li; 
• wj=wj ∪{(t,li)}; 
• member_count[j] = member_count[j]+1; 
• Set match_found ON; 
• v=t-1; 
• lε=li; 
• While match_found is set and v is not end of time frame 

that is v≥0,do 
• Set match_found OFF; 
• ∀lk∈ λv: 1≤ k≤|λv| , do 

• If lk has not been assigned any iso-cluster 
membership, do 

• Compute distance between centroids: 
dk=||ρ(v+1,lε)-ρ(v,lk)||; 

• Compute size ratio: 
hk= 1-min{σ1, σ2} /max{σ1, σ2} 
whereσ1=σ(v+1,lε), σ2= σ(v,lk); 

• Gk = Q(dk,, hk); (find grade Gk for each k, 
Q is similarity function) 

End If 
End ∀ 

• Find minimum(Gk) and record k; 
• Ifmatch is found (Gk is below threshold), do 

• Set match_found ON; 
• Assign iso-cluster membership to lk; 
• wj=wj ∪ {(v,lk)}; 
• member_count[j] = member_count[j]+1; 
• lε=lk; 

End If 
• v=v-1; 

End While 
• Ω = Ω∪ {wj}; 
• j = j + 1; 

End If 
End ∀ 

End ∀ 
End 
Output: Ψ,Ω 
 
4.3. Similarity Measure 

 
Given two clusters C1,C2 in two adjacent time frames and their 
respective centroids p1, p2 the distance that separates these two 
centroids is given by d=||p1-p2||. The size ratio between two 
clusters is determined by rs=1-min{v1,v2}/max{v1,v2} where 
v1,v2 is cluster’s respective volume (or planar projection area). 
These two variables are then rendered fuzzy by using 
membership functions shown in Fig. 3. 

Based on these two fuzzy variables, the following two-input 
single-output TSK fuzzy model with four rules is constructed. 
In this model, the output (G∈[0,1])represents the degree of 
similarity between two clusters. The higher the degree (unity 
being the maximum), the less similar two clusters are. 

If d is small and rs is near_zero Then 
2
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If d is small and rs is near_unity Then 
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If d is large and rs is near_zero Then 
1
2 2

sG
r

= +  

If d is large and rs is near_unity Then 1G =  
 
Since each rule has a crisp output, the overall output is obtained 
via the weighted average. This enables sample data based fuzzy 
modeling without the time-consuming and mathematically 
intractable defuzzification operation. The above TSK fuzzy 
system can be represented as ANFIS shown in Fig. 4. 

 
4.4. Simulation Results 

 
The performance test of the evolution-linkage clustering is 

carried out with same simulation environment settings and 
parameters as in Table 1 and Table 2 over 6 hours of inference 
time period. KSN radar site data dating back to 2010.05.19 is 
used for test simulation. The result is shown in Table 4. 
 
Table 4. Simulation Result of Evolution-Linkage Clustering 

Parameters Value 
Inference Time 360 min (6 hours) 

Total Inference Time Frames 37 

Sampling Time 
From 15:00 To 16:30 

At 10 min interval 
Total Sampling Time Frames 10 

Total Clustering Time 
(for total sampling time frames) 

5.54 sec 

Average Clustering Time (per 
sampling time frame) 

0.554 sec 

 
 

5. Reflectivity Profile 
 
The characterization of the convective activity of cloud cells 

is an important subject in meteorology. Cold convective clouds 
often convey severe weather situations in the form of pouring 
rains or even microbursts. Reflectivity profile of rain echoes 

Fig.3. Two input fuzzy variables d and rs in the antecedent 
with their MFs. 

Fig.4. ANFIS for the determination of the degree of similarity
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provides means to assess rapidly changing weather situation by 
enabling one to estimate the amount of precipitation in selected 
regions. Time series profile of reflectivity distribution can be 
used to determine the expansion rate of given convective cloud 
cells as well as any potential changes in precipitation 
conditions. 

Fig. 5 shows such profile for anomalous weather echoes 
(single cluster) found in the midst of other residual background 
echoes on May 19, 2010 by KSN radar. 

 
 

6. Conclusion 
 

In this paper, a novel technique for tracking and characterizing 
deformable 3D radar structures is proposed. The 
characterization of the tracked cloud cells relies on both 3D 
localization of cloud centers, overall volume expansion rate 
and temporal variations of its reflectivity or rain density profile. 
The statistical labeling of changing weather events based on 
contextual awareness can be applied to six categories of events: 
“severe activity”, “emerging activity”, “growing activity”, 
“declining activity”, “inactivity” and “anomalous activity”. The 
two clustering schemes proposed here are applied on real radar 
data (in UF format) provided by KMA. Multi-sites numerical 
simulations show the validity of the proposed technique and 
that fast and accurate characterization of deformable 3D radar 
structures is achievable through time series profiling of 
reflectivity distribution. 
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