DOI QR코드

DOI QR Code

Digital Switching Filter Algorithm using Modified Fuzzy Weights and Combined Weights in Mixed Image Noise Environment

복합 영상 잡음 환경에서 변형된 퍼지가중치 및 결합가중치를 사용한 디지털 스위칭 필터 알고리즘

  • Cheon, Bong-Won (Dept. of Smart Robot Convergence and Application Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2021.02.26
  • Accepted : 2021.04.01
  • Published : 2021.05.31

Abstract

With the advent of the Fourth Industrial Revolution, modern society uses a diverse pool of devices. In this context, there is increasing interest in removing various kinds of noise arising in data transmission. However, it is difficult to restore image that damaged by mixed noise, and a digital filter that effectively restores an image according to the characteristics of the noise is required. In this paper, we propose a digital switching filter algorithm to remove mixed noise generated during digital image transmission. The proposed algorithm switches the filtering process through noise judgment and reconstructs the image using fuzzy weights and combined weights based on the pixel values inside the mask. To evaluate the proposed algorithm, we compared it with existing filter algorithms through simulation. Filtering results were expanded and compared for visual evaluation, and PSNR comparison was used for quantitative evaluation.

현대 사회는 4차 산업혁명의 영향에 의해 다양한 디지털 통신 장비가 사용되고 있다. 이에 따라 데이터 전송 과정에서 발생하는 잡음제거에 관심이 높아지고 있으며, 효율적으로 영상을 복원하기 위한 연구가 진행되고 있다. 하지만 복합적인 잡음에 훼손된 영상을 복원하는데 어려움을 겪고 있으며, 잡음의 특징에 따라 효과적으로 영상을 복원하는 디지털 필터가 요구되고 있다. 본 논문에서는 디지털 영상 전송 과정에서 발생하는 복합잡음을 제거하기 위한 디지털 스위칭 필터 알고리즘을 제안한다. 제안한 알고리즘은 잡음판단을 통해 필터링 과정을 스위칭하며 마스크 내부의 화소값들을 기준으로 퍼지가중치 및 결합가중치를 사용하여 영상을 복원한다. 제안한 알고리즘을 평가하기 위해 기존 필터 알고리즘들과 시뮬레이션을 통하여 비교하였다. 시각적인 평가를 위해 필터링 결과를 확대하여 비교하였으며, 정량적인 평가를 위해 PSNR 비교를 사용하여 분석하였다.

Keywords

References

  1. T. K. Kim, I. H. Song, and S. H. Lee, "Noise Reduction of HDR Detail Layer using a Kalman Filter Adapted to Local Image Activity," Journal of Korea Multimedia Society, vol. 22, no. 1, pp. 10-17, Jan. 2019. DOI: 10.9717/kmms.2019.22.1.010.
  2. P. S. V. S. Sridhar and R. Caytiles, "Efficient Cloud Data Hosting Availability," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 2, pp. 11-19, Jun. 2017. 10.21742/APJCRI.2017.06.02.
  3. J. H. Cha, Y. W. Woo, and I, G. Lee, "An Effective Method for Generating Images using Genetic Algorithm," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 8, pp. 896-902, Aug. 2019. DOI: 10.6109/jkiice.2019.23.8.896.
  4. S. Calderon, A. Saenz, R. Mora, F. Siles, I. Orozco, and M. E. Buemi, "DeWAFF: A Novel Image Abstraction Approach to Improve the Performance of a Cell Tracking System," in 2015 4th International Work Conference on Bioinspired Intelligence, San Sebastian : Spain, pp. 81-88, 2015. DOI: 10.1109/IWOBI.2015.7160148.
  5. Y. Zeng, Z. Zhang, X. Zhou, and Y. Liu, "High Dynamic Range Infrared Image Compression and Denoising," in 2019 International Conference on Information Technology and Computer Application, Guangzhou : China, pp. 65-69, 2019. DOI:10.1109/ITCA49981.2019.00022.
  6. P. Bottonia and M Ceriani, "Using Blocks to Get More Blocks: Exploring Linked Data Through Integration of Queries and Result Sets in Block Programming," in 2015 IEEE Blocks and Beyond Workshop, Atlanta, GA : USA, pp. 99-101, 2015. DOI: 10.1109/BLOCKS.2015.7369012.
  7. G. Pok and K. H. Ryu, "Efficient Block Matching for Removing Impulse Noise," IEEE Signal Processing Letters, vol. 25, no. 8, pp. 1176-1180, Jun. 2018. DOI:10.1109/LSP.2018.2848846.
  8. R. Lai, Y. Mo, Z. Liu, and J. Guan, "Local and Nonlocal Steering Kernel Weighted Total Variation Model for Image Denoising," Symmetry 2019, vol. 11, no. 3, pp. 1-16, Mar. 2019. DOI: 10.3390/sym11030329.
  9. J. M. Mendel, H. Hagras, H. Bustince, and F. Herrera, "Comments on Interval Type-2 Fuzzy Sets are Generalization of Interval-Valued Fuzzy Sets: Towards a Wide View on Their Relationship," Journal of the IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 249-250, Feb. 2016. DOI: 10.1109/TFUZZ.2015.2446508.
  10. L. M. Herrera, M. I. C. Murguia, D. A. P. Urrutia, and J. A. R. Quintana, "Human Image Complexity Analysis using a Fuzzy Inference System," in 2019 IEEE International Conference on Fuzzy Systems, New Orleans, LA : USA, pp. 1-6, 2019. DOI: 10.1109/FUZZ-IEEE.2019.8858966.
  11. K. Kai, L. Tingting, X. Xianchun, Z. Guoquan, and Z. Jianxin, "Study of Infrared Image Denoising Algorithm based on Steering Kernel Regression Image Guided Filter," in 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan : China, pp. 1-3, 2019. DOI: 10.1109/ICOCN.2019.8934701.
  12. A. K. Seghouane, A. Iqbal, and K. A. Meraim, "A Sequential Block-Structured Dictionary Learning Algorithm for Block Sparse Representations," IEEE Transactions on Computational Imaging, vol. 5, no. 2, pp. 228-239, Jun. 2019. DOI: 10.1109/TCI.2018.2884809.
  13. Y. Feng, S. Li, and M. Dai, "An Image Matching Algorithm based on Sub-Block Coding," in 2009 Second International Workshop on Computer Science and Engineering, Qingdao : China, pp. 599-603, 2009. DOI: 10.1109/WCSE.2009.740.
  14. P. Srisaiprai, W. Lee, and V. Patanavijit, "An Alternative Technique using Median Filter for Image Reconstruction based on Partition Weighted Sum Filter," in 2016 13th International Conference on Electrical Engineering /Electronics, Computer, Telecommunications and Information Technology, Chiang Mai : Thailand, pp. 1-6, 2016. DOI: 10.1109/ECTICon.2016.7561367.
  15. B. W. Cheon and N. H. Kim, "Noise Removal Algorithm Considering High Frequency Components in AWGN Environments," Journal of the Korea Institute of Information and Communication Engineerin, vol. 22, no. 6, pp. 867-873, Jun. 2018. DOI: 10.6109/jkiice.2018.22.6.867.
  16. S. Trambadia and P. Dholakia, "Design and Analysis of an Image Restoration using Wiener Filter with a Quality based Hybrid Algorithms," in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore : India, pp. 1318-1323, 2015. DOI: 10.1109/ECS.2015.7124798.
  17. D. Chowdhury, S. K. Das, S. Nandy, A. Chakraborty, R. Goswami, and A. Chakraborty, "An Atomic Technique for Removal of Gaussian Noise from a Noisy Gray Scale Image using LowPass-Convoluted Gaussian Filter," in 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata : India, pp. 1-5, 2019. DOI: 10.1109/OPTRONIX.2019.8862330.
  18. C. Deng, S. Wang, A. C. Bovik, G. B. Huang, and B. Zhao, "Blind Noisy Image Quality Assessment using Sub-Band Kurtosis," IEEE Transactions on Cybernetics, vol. 50, no. 3, pp. 1146-1156, Mar. 2020. DOI: 10.1109/TCYB.2018.2889376.
  19. H. Zhang, T. Arslan, and B. Flynn, "Wavelet De-noising based Microwave Imaging for Brain Cancer Detection," in 2013 Loughborough Antennas & Propagation Conference, Loughborough : UK, pp. 482-485, 2013. DOI: 10.1109/LAPC.2013.6711946.
  20. Y. Chen, Y. Zhang, H. Shu, J. Yang, L. Luo, J. L. Coatrieux, and Q. Feng, "Structure-Adaptive Fuzzy Estimation for Random-Valued Impulse Noise Suppression," IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 2, pp. 414-427, Feb. 2018. DOI: 10.1109/TCSVT.2016.2615444.