• Title/Summary/Keyword: fuzzy dynamic

Search Result 784, Processing Time 0.024 seconds

Dynamic Hysteresis Model Based on Fuzzy Clustering Approach

  • Mourad, Mordjaoui;Bouzid, Boudjema
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.884-890
    • /
    • 2012
  • Hysteretic behavior model of soft magnetic material usually used in electrical machines and electronic devices is necessary for numerical solution of Maxwell equation. In this study, a new dynamic hysteresis model is presented, based on the nonlinear dynamic system identification from measured data capabilities of fuzzy clustering algorithm. The developed model is based on a Gustafson-Kessel (GK) fuzzy approach used on a normalized gathered data from measured dynamic cycles on a C core transformer made of 0.33mm laminations of cold rolled SiFe. The number of fuzzy rules is optimized by some cluster validity measures like 'partition coefficient' and 'classification entropy'. The clustering results from the GK approach show that it is not only very accurate but also provides its effectiveness and potential for dynamic magnetic hysteresis modeling.

Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control (정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계)

  • Oh, Sung-Kwun;Cho, Se-Hee;Lee, Seung-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

Development of Neuro-Fuzzy System for Cold Storage Facility (저온저장고의 뉴로-퍼지 제어시스템 개발)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.117-126
    • /
    • 2003
  • This study was conducted to develop precision control system fur cold storage facility that could offer safe storage environment for green grocery. For that reason of neuro-fuzzy control system with learning ability algorithm and single chip neuro-fuzzy micro controller was developed for cold storage facility. Dynamic characteristics and hunting of neuro-fuzzy control system were far superior to on-off and fuzzy control system. Dynamic characteristics of temperature were faster than on-off control system by 1,555 seconds(123% faster) and fuzzy control system by 460 seconds(36.4% faster). When system was arrived at steady state. hunting was ${\pm}$0.5$^{\circ}C$ in on-off control system, ${\pm}$0.4$^{\circ}C$ in fuzzy control system, and ${\pm}$0.3$^{\circ}C$ in neuro-fuzzy control system. Hunting of humidity and wind velocity was also controlled precisely by 70 to 72.5% and 1m/s For storage experiment with onion, characteristics of neuro-fuzzy control system were tested. Dynamic characteristics of neuro-fuzzy control system made cold storage facility conducted precooling ability and minimized hunting.

STABILITY OF FUZZY DYNAMIC CONTROL SYSTEM: The Cell-State Transition Method

  • Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1078-1081
    • /
    • 1993
  • The Objective of this paper is to provide fuzzy control designers with a design tool for stable fuzzy logic controllers. Given multiple sets of data disturbed by vagueness uncertainty, we generate the implicative rules that guarantee stability and robustness of closed-loop fuzzy dynamic systems. We propose the cell-state transition method which utilizes Hsu's cell-to-cell mapping concept [1]. As a result, a generic and implementable design methodology for obtaining a fuzzy feedback gain K, a fuzzy hypercube [2], is provided and illustrated with simple examples.

  • PDF

Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle (궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Modeling of Dynamic Hysteresis Based on Takagi-Sugeno Fuzzy Duhem Model

  • Lee, Sang-Yun;Park, Mignon;Baek, Jaeho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.277-283
    • /
    • 2013
  • In this study, we propose a novel method for modeling dynamic hysteresis. Hysteresis is a widespread phenomenon that is observed in many physical systems. Many different models have been developed for representing a hysteretic system. Among them, the Duhem model is a classical nonlinear dynamic hysteresis model satisfying the properties of hysteresis. The purpose of this work is to develop a novel method that expresses the local dynamics of the Duhem model by a linear system model. Our approach utilizes a certain type of fuzzy system that is based on Takagi-Sugeno (T-S) fuzzy models. The proposed T-S fuzzy Duhem model is achieved by fuzzy blending of the linear system model. A simulated example applied to shape memory alloy actuators, which have typical hysteretic properties, illustrates the applicability of our proposed scheme.

Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving on a Slope

  • Liu Yugang;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.197-203
    • /
    • 2006
  • This paper addresses dynamic modeling and task-space trajectory following issues for nonholonomic mobile manipulators moving on a slope. An integrated dynamic modeling method is proposed considering nonholonomic constraints and interactive motions. An adaptive neural-fuzzy controller is presented for end-effector trajectory following, which does not rely on precise apriori knowledge of dynamic parameters and can suppress bounded external disturbances. Effectiveness of the proposed algorithm is verified through simulations.

The prediction of self-excited oscillation of a fuzzy control system based on the describing function dynamic case (묘사함수를 이용한 퍼지 제어시스템의 자기진동 현상의 예측-동적 경우)

  • Kim, Eun-Tai;Noh, Heung-Sik;Kwon, Chul;Kim, Dong-Yon;Park, Mig-Non
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.41-49
    • /
    • 1998
  • This paper deals with the self-excited oscillation of a system that is controlled by a dynamic nonlinear fuzzy controller. The self-excited oscillation can be observed in the systems composed of nonlinear elements and its analysis is as important as that of stability in the design of nonlinear systems. by using the frequency transfer function analysis known as the describing function method in nonlinear control theory, the oscillation is theoretically predicted. First, the describing function of a dynamic fuzzy controller is derived and then, based on the derived describing fuction, self-excited oscillation of the system controlled by a dynamic fuzzy controller is predicted. To obtain the describing function of the dynamic fuzzy controller, a simple structure is assumed for the fuzzy controller.

  • PDF

Fuzzy Control of a Simply-Supported Beam under a Moving Mass (이동질량을 받는 단순지지보의 퍼지제어)

  • 공용식;류봉조;이규섭;류두현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.196-201
    • /
    • 2002
  • This paper deals with the active vibration control of a simply-supported beam under a Moving mass using fuzzy control technique. Governing equation3 for dynamic responses of the beam under a moving mass are derived by Galerkin's mode summation method. Dynamic responses of the beam are obtained by Runge-Kutta integration method, and are compared with experimental results. For the active vibration control of the beam due to moving mass, a controller based on fuzzy logic was designed. The numerical predictions for dynamic deflections of the beam have a good agreement with the experimental results well. As for the fuzzy control of the tested beam, more than 50% reductions of dynamic deflection and residual vibrations under a moving mass are demonstrated.

  • PDF

Dynamic Path Planning for Mobile Robots Using Fuzzy Potential Field Method (퍼지 포텐셜 필드를 이용한 이동로봇의 동적 경로 계획)

  • Woo, Kyoung-Sik;Park, Jong-Hun;Huh, Uk-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.291-297
    • /
    • 2012
  • In this paper, potential field algorithm was used for path planning in dynamic environment. This algorithm is used to plan a robot path because of its elegant mathematical analysis and simplicity. However, there are some problems. The problems are problem of collision risk, problem of avoidance path, problem of time consumption. In order to solve these problems, we fused potential field with fuzzy system. The input of the fuzzy system is set using relative velocity and location of robot and obstacle. The output of the fuzzy system is set using the weighting factor of repulsive potential function. The potential field algorithm is improved by using fuzzy potential field algorithm and, path planning in various environment has been done.